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LARGE MARGIN CLASSIFIERS

David Kauchak
CS 158 – Fall 2019

Admin

Assignment 5
¤ Experiments

Assignment 6

Next class: Meet in Edmunds 105

Midterm

Course feedback
¤ Thanks!
¤ We’ll go over it at the beginning of next class

Which hyperplane?

Two main variations in linear classifiers:
- which hyperplane they choose when the data is linearly separable
- how they handle data that is not linearly separable

Linear approaches so far

Perceptron:
- separable:
- non-separable:

Gradient descent:
- separable:
- non-separable:
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Linear approaches so far

Perceptron:
- separable: 

- finds some hyperplane that separates the data
- non-separable:

- will continue to adjust as it iterates through the examples
- final hyperplane will depend on which examples it saw recently

Gradient descent:
- separable and non-separable

- finds the hyperplane that minimizes the objective function (loss + 
regularization)

Which hyperplane is this?

Which hyperplane would you choose?

Large margin classifiers

Choose the line where the distance to the nearest 
point(s) is as large as possible

margin margin

Large margin classifiers

The margin of a classifier is the distance to the closest points of either class

Large margin classifiers attempt to maximize this

margin margin
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Support vectors

For any separating hyperplane, there exist some set of “closest points”

These are called the support vectors

For n dimensions, there will be at least n+1 support vectors 

Measuring the margin

The margin is the distance to the support vectors, i.e. 
the “closest points”, on either side of the hyperplane

Measuring the margin

w ⋅ xi + b = 0
w ⋅ xi + b < 0
negative examples

w ⋅ xi + b > 0
positive examples

Measuring the margin

w ⋅ xi + b = 0
w ⋅ xi + b < 0
negative examples

w ⋅ xi + b > 0
positive examples

What are the equations for the margin lines?
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Measuring the margin

w ⋅ xi + b = 0
w ⋅ xi + b = −c

w ⋅ xi + b = c

What is c?

We know they’re the same distance apart (otherwise, they wouldn’t be 
support vectors!)

Measuring the margin

w ⋅ xi + b = 0

w ⋅ xi + b = −c

w ⋅ xi + b = c

Depends! If we scale w, we vary the constant without changing the 
separating hyperplane

Measuring the margin

w ⋅ xi + b = 0

w ⋅ xi + b = c

Depends! If we scale w, we vary the constant without changing the 
separating hyperplane

Larger w result in 
larger constants

w ⋅ xi + b = −c

Measuring the margin

w ⋅ xi + b = 0

w ⋅ xi + b = c

Depends! If we scale w, we vary the constant without changing the 
separating hyperplane

Smaller w result in 
smaller constants

w ⋅ xi + b = −c
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Measuring the margin

w ⋅ xi + b =1

For now, let’s assume c = 1.

What is this distance?

w ⋅ xi + b = −1

Distance from the hyperplane

w=(1,2)

f1

f2

(-1,-2)

How far away is this point from the hyperplane?

Distance from the hyperplane

f1

f2

(-1,-2)

How far away is this point from the hyperplane?

w=(1,2)

! = −1 2 + (−2)2 = 5

Distance from the hyperplane

f1

f2

(1,1)

How far away is this point from the hyperplane?

w=(1,2)
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Distance from the hyperplane

f1

f2

(1,1)

How far away is this point from the hyperplane?

w=(1,2)

d(x) = w ⋅ x + b

Is it?

Distance from the hyperplane

f1

f2

(1,1)

Does that seem right?  What’s the problem?

w=(1,2)

d(x) = w ⋅ x + b

= w1x1 +w2x2 + b

=1*1+1*2+ 0

= 3?

Distance from the hyperplane

f1

f2

(1,1)

How far away is the point from the hyperplane?

w=(2,4)

d(x) = w ⋅ x + b

Distance from the hyperplane

f1

f2

(1,1)

How far away is the point from the hyperplane?

w=(2,4)

d(x) = w ⋅ x + b

= w1x1 +w2x2 + b

= 2*1+ 4*2+ 0

=10?



10/10/19

7

Distance from the hyperplane

f1

f2

(1,1)

How far away is this point from the hyperplane?

w=(1,2)

d(x) = w ⋅ x + b
w

length normalized 
weight vectors

Distance from the hyperplane

f1

f2

(1,1)

How far away is this point from the hyperplane?

w=(1,2)

=
w1x1 +w2x2( )+ b

5

=
1*1+1*2( )+ 0

5
=1.34

d(x) = w ⋅ x + b
w

Distance from the hyperplane

f1

f2

(1,1)

The magnitude of the weight vector doesn’t matter

w=(2,4)

length normalized 
weight vectors

d(x) = w ⋅ x + b
w

Distance from the hyperplane

f1

f2

(1,1)

w=(0.5,1)

d(x) = w ⋅ x + b
w

length normalized 
weight vectors

The magnitude of the weight vector doesn’t matter
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Measuring the margin

w ⋅ xi + b = −1

w ⋅ xi + b =1

For now, let’s just assume c = 1.

What is this distance?

Measuring the margin

w ⋅ xi + b = −1

w ⋅ xi + b =1

For now, let’s just assume c = 1.

w ⋅ xi + b
w

=
1
w
?

Measuring the margin

w ⋅ xi + b = −1

w ⋅ xi + b =1

For now, let’s just assume c = 1.

w ⋅ xi + b
w

=
1
w

Large margin classifier setup

Select the hyperplane with the largest margin where the 
points are classified correctly and outside the margin!

Setup as a constrained optimization problem:

maxw,b   margin(w,b)

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

what does this say?



10/10/19

9

Large margin classifier setup

Select the hyperplane with the largest margin where the 
points are classified correctly and outside the margin!

Setup as a constrained optimization problem:

maxw,b   1
w

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

Maximizing the margin

subject to:

Maximizing the margin is equivalent to minimizing ! !
(subject to the separating constraints)

minw,b   w

yi (w ⋅ xi + b) ≥1  ∀i

Maximizing the margin

subject to:

minw,b   w

yi (w ⋅ xi + b) ≥1  ∀i
The constraints:
1. make sure the data is separable
2. encourages w to be larger (once the data is separable)

The minimization criterion wants w to be as small as possible

Measuring the margin

w ⋅ xi + b = −1

w ⋅ xi + b =1

For now, let’s just assume c = 1.

Claim: it does not matter 
what c we choose for the 
SVM problem. Why?
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Measuring the margin

w ⋅ xi + b = −c

w ⋅ xi + b = c

What is this distance?

Measuring the margin

w ⋅ xi + b = −c

w ⋅ xi + b = c

w ⋅ xi + b
w

=
c
w

Maximizing the margin

subject to:

minw,b   
w
c

yi (w ⋅ xi + b) ≥ c  ∀i

vs.

subject to:

minw,b   w

yi (w ⋅ xi + b) ≥1  ∀i

What’s the difference?

Maximizing the margin

subject to:

minw,b   
w
c

yi (w ⋅ xi + b) ≥ c  ∀i

vs.

subject to:

minw,b   w

yi (w ⋅ xi + b) ≥1  ∀i

Learn the exact same 
hyperplane just scaled by a 
constant amount

Because of this, often see it 
with c = 1
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For those that are curious…
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Maximizing the margin: the real problem

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

Why the squared?

minw,b   w 2

Maximizing the margin: the real problem

yi (w ⋅ xi + b) ≥1  ∀i

subject to:

minw,b   w 2
= wii∑

2

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

minw,b   w = wii∑
2

Minimizing ! is equivalent to minimizing ! 2

The sum of the squared weights is a convex function!

Support vector machine problem

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

minw,b   w 2

This is a version of a quadratic optimization problem

Maximize/minimize a quadratic function

Subject to a set of linear constraints

Many, many variants of solving this problem (we’ll see one in a bit)
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Soft Margin Classification  

What about this problem?

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

minw,b   w 2

Soft Margin Classification  

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

minw,b   w 2

We’d like to learn something like this, 
but our constraints won’t allow it L

Slack variables

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

minw,b   w 2

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

slack variables 
(one for each example)

What effect does this have?

Slack variables

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

slack penalties
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Slack variables

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

allowed to make a mistake

penalized by how far 
from “correct”

trade-off between margin 
maximization and penalizationmargin

Soft margin SVM

Still a quadratic optimization problem!

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

Demo

http://cs.stanford.edu/people/karpathy/svmjs/demo/

Solving the SVM problem

http://cs.stanford.edu/people/karpathy/svmjs/demo/
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

Given the optimal solution, w, b:

Can we figure out what the slack penalties are for each point?

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

What do the margin lines
represent wrt w,b?

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

w ⋅ xi + b =1
w ⋅ xi + b = −1

Or: yi (w ⋅ xi + b) =1

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

What are the slack values for points outside (or on) the 
margin AND correctly classified? 
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

0!  The slack variables have to be greater than or equal to zero 
and if they’re on or beyond the margin then yi(wxi+b) ≥ 1 already

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

What are the slack values for points inside the margin 
AND classified correctly?

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

Difference from the point to the margin. Which is?

ς i =1− yi (w ⋅ xi + b)

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

What are the slack values for points that are incorrectly 
classified?
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

Which 
is?

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin

?

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin

−yi (w ⋅ xi + b) Why -?

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin

−yi (w ⋅ xi + b) ?
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin

−yi (w ⋅ xi + b) 1

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin

ς i =1− yi (w ⋅ xi + b)

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

ς i =
0 if  yi (w ⋅ xi + b) ≥1

1− yi (w ⋅ xi + b) otherwise

$
%
&

'&

Understanding the Soft Margin SVM

ς i =
0 if  yi (w ⋅ xi + b) ≥1

1− yi (w ⋅ xi + b) otherwise

$
%
&

'&

ς i =max(0,1− yi (w ⋅ xi + b))

=max(0,1− yy ')

Does this look familiar?
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Hinge loss!

l(y, y ') =1 yy ' ≤ 0[ ]0/1 loss:

Hinge: l(y, y ') =max(0,1− yy ')

Exponential: l(y, y ') = exp(−yy ')

Squared loss: l(y, y ') = (y− y ')2

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

ς i =max(0,1− yi (w ⋅ xi + b))

Do we need the constraints still?

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

ς i =max(0,1− yi (w ⋅ xi + b))

minw,b   w 2
+C max(0,1− yi (w ⋅ xi + b))

i∑

Unconstrained problem!

Understanding the Soft Margin SVM

minw,b   w 2
+C losshinge(yi, yi ')i∑

Does this look like something we’ve seen before?

argminw,b loss(yy ')+λ  regularizer(w,b)
i=1

n

∑

Gradient descent problem!
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Soft margin SVM as gradient descent

minw,b   w 2
+C losshinge(yi, yi ')i∑

argminw,b loss(yy ')+λ  regularizer(w,b)
i=1

n

∑

minw,b   losshinge(yi, yi ')i∑ +
1
C
w 2multiply through by 1/C

and rearrange

minw,b   losshinge(yi, yi ')i∑ +λ w 2
let λ=1/C

What type of gradient descent problem?

Soft margin SVM as gradient descent

One way to solve the soft margin SVM problem is 
using gradient descent

minw,b   losshinge(yi, yi ')i∑ +λ w 2

hinge loss L2 regularization

Gradient descent SVM solver

¤ pick a starting point (w)
¤ repeat until loss doesn’t decrease in all dimensions:

n pick a dimension
n move a small amount in that dimension towards decreasing loss (using 

the derivative)

wj = wj +η yixi1[yi (w ⋅ x + b)<1]
i=1

n

∑ −ηλwj

wi = wi −η
d
dwi

(loss(w)+ regularizer(w,b))

hinge loss L2 regularization

Finds the largest margin hyperplane while allowing for a soft margin

Support vector machines: 2013

One of the most successful (if not the most successful) 
classification approach:

Support vector machine

perceptron algorithm

k nearest neighbor

decision tree
2013 2016 2019
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Trends over time


