

### Admin

Assignment 2

Assignment 1 solution posted

Keep reading

Videos?





| Re        | al-wo                 | rld classification                                                                                     |        |
|-----------|-----------------------|--------------------------------------------------------------------------------------------------------|--------|
| NC.       |                       |                                                                                                        |        |
|           |                       |                                                                                                        |        |
| Goog      | le has labele         | d training data, for example from people clicking the                                                  |        |
| "span     | " button but          | when new messages come in they're not labeled                                                          |        |
| span      | 1 5011011, 501        | when new messages come in, mey re nor labeled                                                          |        |
|           |                       | ······                                                                                                 | -      |
| □☆□ fm    | cory                  | (no subject) - I am in the military unit here in Afghanistan, we have some amount of funds that we war | 7:18 a |
| □☆□ cor   | owamotorinn           | (no subject) - plz revert for the deal                                                                 | 6:51 a |
| 🗆 🚖 🗆 per | fecternail1           | กกกกกกกกกกกกกกกกกก - กกกกกกกกกกกกกกกก                                                                  | 2:56 a |
| 🗆 🚖 🗆 DR  | ESURI   SOSETE   COLJ | AN. Pregateste-te de frig! Alege din 1000 modele de ciorapi, cumpara acum la cel mai bun pret! - Per   | Sep 1  |
| 🗌 🚖 🗆 Sor | oush Madjzoob         | Stop burning money; get the most out of your investment! - Unsubscribe To remove yourself from :       | Sep 1  |
|           | ane Irazoki Sanchez   | (no subject) - The BRITISH JUMBO COMPANY has Award your Id with the sum of 3000000.00. Send            | Sep    |
| □ ☆ □ Lor | ng, Bruce [NS]        | (no subject) - The JUMBO COMPANY has Picked you for a lump sum payout of 3000000.00. To clair          | Sep    |
| □☆□ h_0   | 144                   | EEIC2013EI-Submission: Sept 20th - 2013 3rd International Conference on Electric and Electronic        | Sep    |
| 🗆 🚖 🗆 Sor | oush Madjzoob         | Did you know the wrong technology can cost you money? - Dear David, Technology has become t            | Sep    |
| 🗆 🚖 🗆 Sar | ntechUSA.com          | Pimp Up Your Network and Save Money Doing Itl - Call for consulting! 888.923.1000 FREE Our mis         | Sep    |
| 🗆 🚖 🗆 Sor | oush Madjzoob         | When is the last time you checked your backups? - Unsubscribe To remove yourself from this ema         | Sep    |
| 🗆 🚖 🗆 Sor | oush Madjzoob         | Is your data at risk? Get Simple, Secure & Scalable Cloud-based Backup in 3 steps! - \$account_r       | Sep    |
| 🗆 🚖 🗆 Ede | an Newsletter         | Get Your Free Gifts - Up To 50% Savings + Free Shipping Having trouble reading this email? view in     | Sep    |
|           | ademicPub             | Meet the cutting edge in customized course materials - AcademicPub: Your Book - Your Way Acac          | Sep    |
| □☆□ Ma    | il Administrator      | Your e-mail quota has been reached! (Action Required) - Attention User, MAILBOX QUOTA EXCEE            | Sep    |
|           | lis Farno Online      | New message from Wells Farno Online - You have 1 new message. Please Login to your account a           | Sen 1  |
| L 12 L 10 | no range ennite       | fren medeage nem name range enmite i rea nare i nem medeage i nease cogin e year account               |        |



| Weight     Color     Label       4     Red     Apple       5     Yellow     Apple       6     Yellow     Bannaa       3     Red     Apple                                                         | Apples vs. Bananas |               |                             |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|-----------------------------|--|--|--|
| Weight         Cafar         Label           4         Red         Apple           5         Yellow         Apple           6         Yellow         Banana           3         Red         Apple |                    |               |                             |  |  |  |
| 4     Red     Apple       5     Yellow     Apple       6     Yellow     Banana       3     Red     Apple                                                                                          | Weight             | Color Label   |                             |  |  |  |
| S     Yellow     Apple       6     Yellow     Banana       3     Red     Apple                                                                                                                    | 4 1                | Red Apple     |                             |  |  |  |
| 6 Yellow Banana Can we visualize this data?                                                                                                                                                       | 5                  | Yellow Apple  |                             |  |  |  |
| 3 Red Apple                                                                                                                                                                                       | 6                  | Yellow Banana | Can we visualize this data? |  |  |  |
|                                                                                                                                                                                                   | 3                  | Red Apple     |                             |  |  |  |
| 7 Yellow Banana                                                                                                                                                                                   | 7                  | Yellow Banana |                             |  |  |  |
| 8 Yellow Banana                                                                                                                                                                                   | 8                  | Yellow Banana |                             |  |  |  |
| ó Yellow Apple                                                                                                                                                                                    | 6                  | Yellow Apple  |                             |  |  |  |

















# k-Nearest Neighbor (k-NN)

#### To classify an example **d**:

- Find k nearest neighbors of d
- Choose as the label the majority label within the *k* nearest neighbors

# k-Nearest Neighbor (k-NN)

- To classify an example **d**:
  - Find k nearest neighbors of d
  - Choose as the label the majority label within the *k* nearest neighbors

How do we measure "nearest"?



### How to pick k

#### Common heuristics:

#### 🗖 often 3, 5, 7

choose an odd number to avoid ties

Use development data

### k-NN variants

#### To classify an example **d**:

- Find k nearest neighbors of d
- Choose as the class the majority class within the *k* nearest neighbors

Any variation ideas?

### k-NN variations

Instead of *k* nearest neighbors, count majority from all examples within a fixed distance

#### Weighted *k*-NN:

- Right now, all examples are treated equally
- weight the "vote" of the examples, so that closer examples have more vote/weight
- often use some sort of exponential decay











### Decision trees vs. k-NN

Which is faster to train? k-NN doesn't require any training!

Which is faster to classify? For most data sets, decision trees

Do they use the features in the same way to label the examples?

k-NN treats all features equally! Decision trees "select" important features

## Machine learning models

# Some machine learning approaches make strong assumptions about the data

- If the assumptions are true this can often lead to better performance
- If the assumptions aren't true, they can fail miserably

Other approaches don't make many assumptions about the data

- This can allow us to learn from more varied data
- But, they are more prone to overfitting
- and generally require more training data













# Model assumptions

If you don't have strong assumptions about the model, it can take you a longer to learn

Assume now that our model of the blue class is two circles



#### **Bias**

The "bias" of a model is how strong the model assumptions are.

low-bias classifiers make minimal assumptions about the data (*k*-NN and DT are generally considered low bias)

high-bias classifiers make strong assumptions about the data



- A strong high-bias assumption is *linear separability*:

  in 2 dimensions, can separate classes by a line
  - in higher dimensions, need hyperplanes

A linear model is a model that assumes the data is linearly separable



# Hyperplanes

A hyperplane is line/plane in a high dimensional space



What defines a line? What defines a hyperplane?



















# Linear models A linear model in *n*-dimensional space (i.e. *n* features) is define by *n*+1 weights: In two dimensions, a line: $0 = w_1 f_1 + w_2 f_2 + b$ (where b = -a) In three dimensions, a plane: $0 = w_1 f_1 + w_2 f_2 + w_3 f_3 + b$ In *n*-dimensions, a hyperplane $0 = b + \sum_{i=1}^{n} w_i f_i$







# The challenge

Our intuitions about space/ distance don't scale with dimensions!

