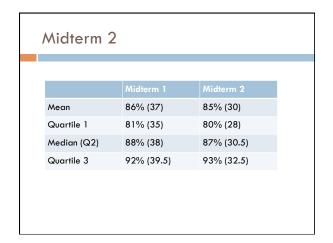
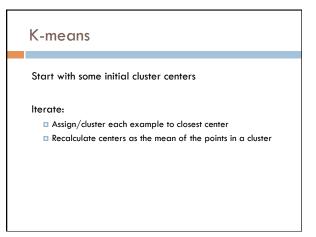


Final project Presentations on Tuesday 4 minute max 2-3 slides. E-mail me by 9am on Tuesday What problem you tackled and results Paper and final code submitted on Wednesday Final exam next week



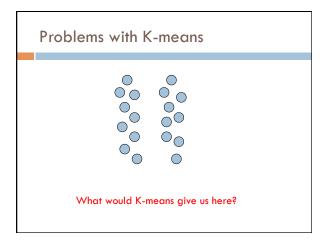


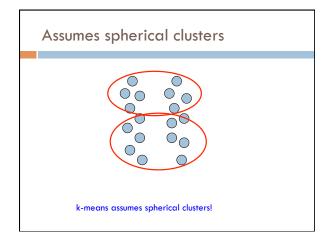
Problems with K-means

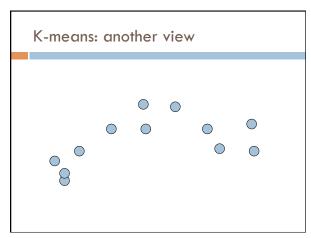
Determining K is challenging

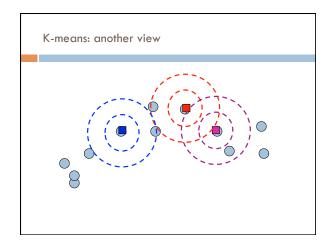
Hard clustering isn't always right

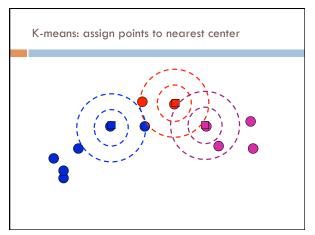
Greedy approach

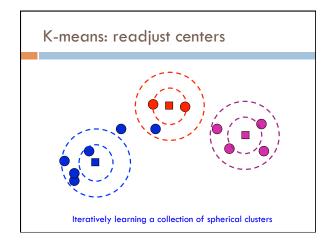


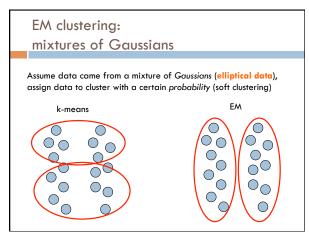












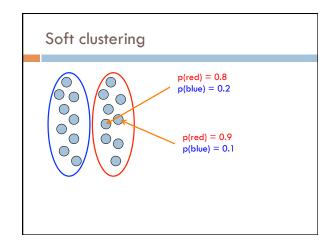
EM clustering

Very similar at a high-level to K-means

Iterate between assigning points and recalculating cluster centers

Two main differences between K-means and EM clustering:

- 1. We assume elliptical clusters (instead of spherical)
- 2. It is a "soft" clustering algorithm



EM clustering

Start with some initial cluster centers *Iterate*:

soft assign points to each cluster

Calculate: $p(\theta_c|x)$

the probability of each point belonging to each cluster

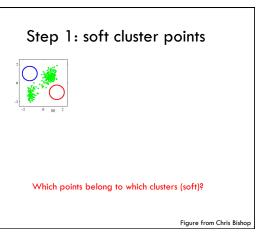
recalculate the cluster centers

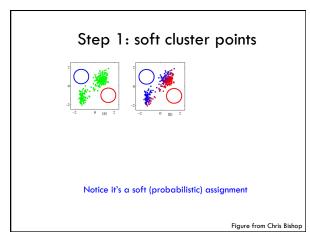
Calculate new cluster parameters, $\theta_{\rm c}$ maximum likelihood cluster centers given the current soft clustering

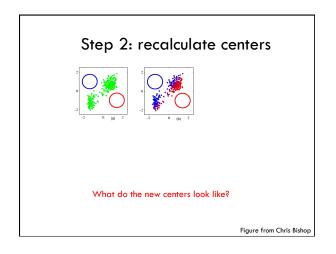
EM example

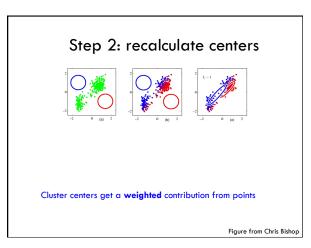
Start with some initial cluster centers

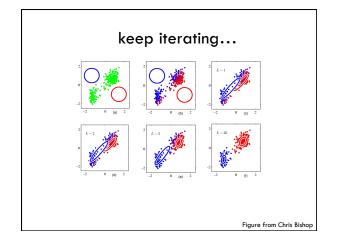
Figure from Chris Bishop



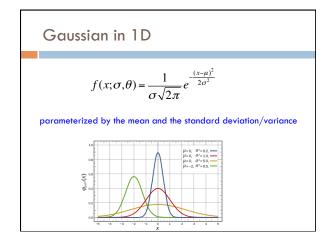


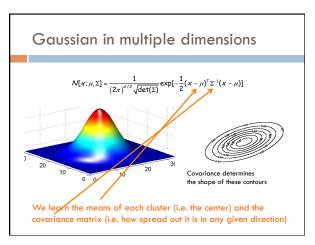






Model: mixture of Gaussians How do you define a Gaussian (i.e. ellipse)? In 1-D? In m-D?





Step 1: soft cluster points

soft assign points to each cluster $\text{Calculate: p}(\theta_c|x)$ the probability of each point belonging to each cluster

How do we calculate these probabilities?

Step 1: soft cluster points

soft assign points to each cluster

Calculate: $p(\theta_c|x)$

the probability of each point belonging to each cluster

Just plug into the Gaussian equation for each cluster! (and normalize to make a probability)

Step 2: recalculate centers

Recalculate centers

calculate new cluster parameters, $\theta_{\rm c}$ maximum likelihood cluster centers given the current soft clustering

How do calculate the cluster centers?

Fitting a Gaussian

What is the "best"-fit Gaussian for this data?

10, 10, 10, 9, 9, 8, 11, 7, 6, ...

Recall this is the 1-D Gaussian equation:

$$f(x;\sigma,\theta) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

Fitting a Gaussian

What is the "best"-fit Gaussian for this data?

10, 10, 10, 9, 9, 8, 11, 7, 6, ...

The MLE is just the mean and variance of the data!

Recall this is the 1-D Gaussian equation:

$$f(x;\sigma,\theta) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Step 2: recalculate centers

Recalculate centers:

Calculate θ maximum likelihood cluster centers given the current soft clustering

How do we deal with "soft" data points?

Step 2: recalculate centers

Recalculate centers:

Calculate θ_c maximum likelihood cluster centers given the current soft clustering

Use fractional counts!

E and M steps: creating a better model

EM stands for Expectation Maximization

Expectation: Given the current model, figure out the expected probabilities of the data points to each cluster

 $p(\theta_c|x)$ What is the probability of each point belonging to each cluster?

Maximization: Given the probabilistic assignment of all the points, estimate a new model, θ_c

> Just like NB maximum likelihood estimation, except we use fractional counts instead of whole counts

Similar to k-means

Iterate:

Assign/cluster each point to closest center

Expectation: Given the current model, figure out the expected probabilities of the points to each cluster

 $p(\theta_c|x)$

Maximization: Given the probabilistic assignment of all the points, estimate a new model, θ_c

Recalculate centers as the mean of the points in a cluster

E and M steps

Expectation: Given the current model, figure out the expected probabilities of the data points to each cluster

Maximization: Given the probabilistic assignment of all the points, estimate a new model, $\theta_{\rm C}$

Iterate:

each iterations increases the likelihood of the data and is guaranteed to converge (though to a local optimum)!

EM

 $\ensuremath{\mathsf{EM}}$ is a general purpose approach for training a model when you don't have labels

Not just for clustering!

□ K-means is just for clustering

One of the most general purpose unsupervised approaches

can be hard to get right!

EM is a general framework

Create an initial model, θ '

□ Arbitrarily, randomly, or with a small set of training examples

Use the model θ' to obtain another model θ such that

 $\sum\nolimits_{i}\log P_{\theta}(data_{i}) \geq \sum\nolimits_{i}\log P_{\theta}(data_{i}) \qquad \text{i.e. better models data} \\ \text{(increased log likelihood)}$

Let $\theta' = \theta$ and repeat the above step until reaching a local maximum

 $\hfill\Box$ Guaranteed to find a better model after each iteration

Where else have you seen EM?

EM shows up all over the place

Training HMMs (Baum-Welch algorithm)

Learning probabilities for Bayesian networks

EM-clustering

Learning word alignments for language translation

Learning Twitter friend network

Genetics

Finance

Anytime you have a model and unlabeled data!

Finding Word Alignments

... la maison ... la maison bleue ... la fleur ...

 \dots the house \dots the blue house \dots the flower \dots

In machine translation, we train from pairs of translated sentences

Often useful to know how the words align in the sentences

Ise FMI

• learn a model of P(french-word | english-word)

Finding Word Alignments

... la maison ... la maison bleue ... la fleur ...

All word alignments are equally likely

All P(french-word | english-word) equally likely

Finding Word Alignments

... la maison ... la maison bleue ... la fleur ...

"la" and "the" observed to co-occur frequently, so $P(la \mid the)$ is increased.

Finding Word Alignments

"house" co-occurs with both "la" and "maison", but P(maison | house) can be raised without limit, to 1.0, while P(la | house) is limited because of "the"

(pigeonhole principle)

Finding Word Alignments

settling down after another iteration

Finding Word Alignments

Inherent hidden structure revealed by EM training! For details, see

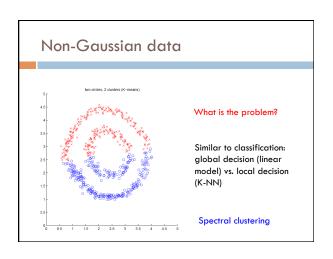
- "A Statistical MT Tutorial Workbook" (Knight, 1999).
 - 37 easy sections, final section promises a free beer.
- "The Mathematics of Statistical Machine Translation" (Brown et al, 1993)
- Software: GIZA++

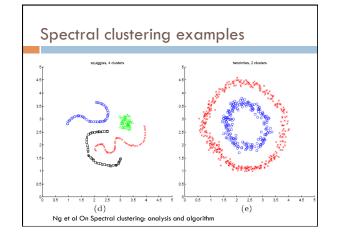
Statistical Machine Translation

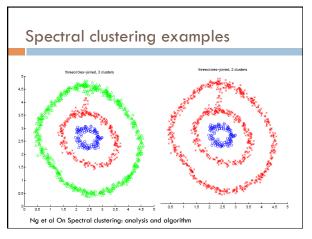
P(maison | house) = 0.411 P(maison | building) = 0.027 P(maison | manson) = 0.020

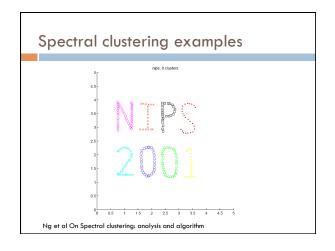
Estimating the model from training data

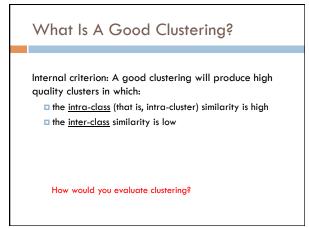
Other clustering algorithms K-means and EM-clustering are by far the most popular for clustering However, they can't handle all clustering tasks What types of clustering problems can't they handle?

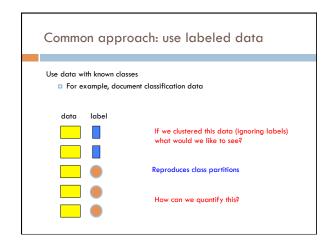


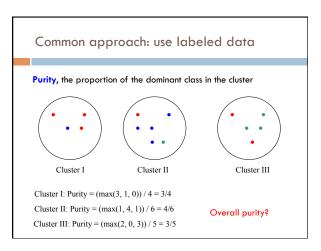












Overall purity

Cluster I: Purity = $(\max(3, 1, 0)) / 4 = 3/4$ Cluster II: Purity = $(\max(1, 4, 1)) / 6 = 4/6$ Cluster III: Purity = $(\max(2, 0, 3)) / 5 = 3/5$

Cluster average:

$$\frac{\frac{3}{4} + \frac{4}{6} + \frac{3}{5}}{3} = 0.672$$

Weighted average: $\frac{4*\frac{3}{4}+6*\frac{4}{6}+5*\frac{3}{5}}{15} = \frac{3+4+3}{15} = 0.667$

Purity issues...

Purity, the proportion of the dominant class in the cluster

Good for comparing two algorithms, but not understanding how well a single algorithm is doing, why?

□ Increasing the number of clusters increases purity

Purity isn't perfect

Which is better based on purity?

Which do you think is better?

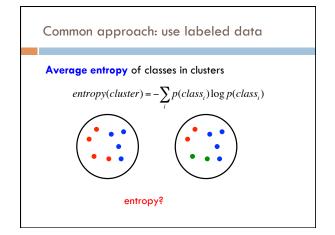
Ideas?

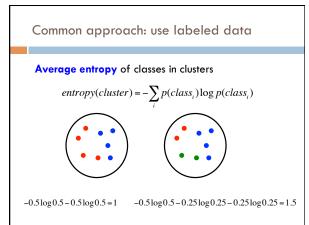
Common approach: use labeled data

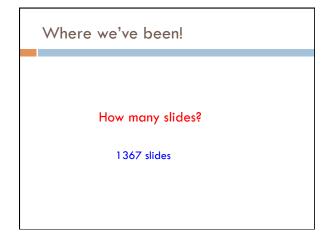
Average entropy of classes in clusters

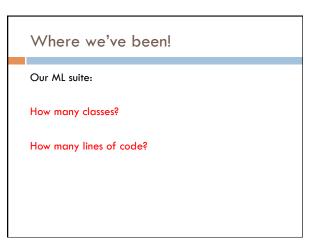
$$entropy(cluster) = -\sum_{i} p(class_{i}) \log p(class_{i})$$

where $p(class_i)$ is proportion of class i in cluster









Where we've been! Our ML suite: 29 classes 2951 lines of code

Our ML suite: Supports 7 classifiers Decision Tree Perceptron Average Perceptron Gradient descent 2 loss functions 1 regularization methods K-NN Native Bayes 2 loyer neural network Supports two types of data normalization feature normalization example normalization supports two types of meta-classifiers OVA AVA

Where we've been! Hadoop! - 532 lines of hadoop code in demos

