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ENSEMBLE LEARNING 
David Kauchak 
CS158 – Fall 2016 

Admin 

Assignment grading 
 
Assignment 9 
 
Midterm 2 
 
Final project 

! No formal class Tuesday: figure out project ideas 
! 11/23 (Wed) submit project proposal 

 

Quick exercise 

Write down on the paper (don’t write your name): 
1)  Something you’re happy about right now 
2)  Something you’re worried about right now 

Fold the piece of paper 
 
I’ll collect them, redistribute them and we’ll read them out 
loud 
 
If you don’t want to participate, just leave the paper 
blank 

Ensemble learning 

Basic idea: if one classifier works well, why not use 
multiple classifiers! 
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Ensemble learning 

Basic idea: if one classifier works well, why not use 
multiple classifiers! 

Training 
Data 

model 1 learning alg 

Training 

learning alg 

…
 

model 2 

learning alg model m 

Ensemble learning 

Basic idea: if one classifier works well, why not use 
multiple classifiers! 

model 1 

Testing 

model 2 

model m 

example to 
label 

…
 

prediction 1 

prediction 2 

prediction m 

How do we decide on 
the final prediction? 

Ensemble learning 

Basic idea: if one classifier works well, why not use 
multiple classifiers! 

Testing 

prediction 1 

prediction 2 

prediction m 

…
 

-  take majority vote 
-  if they output probabilities, 

take a weighted vote 

How does having multiple 
classifiers help us? 

Benefits of ensemble learning 

model 1 

model 2 

Assume each classifier makes a mistake with some 
probability (e.g. 0.4, that is a 40% error rate) 

model 3 

Assuming the decisions made between 
classifiers are independent, what will be the 
probability that we make a mistake (i.e. error 
rate) with three classifiers for a binary 
classification problem? 
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Benefits of ensemble learning 

Assume each classifier makes a mistake with some 
probability (e.g. 0.4, that is a 40% error rate) 

model 1 model 2 model 3 prob 

C C C .6*.6*.6=0.216 

C C I .6*.6*.4=0.144 

C I C .6*.4*.6=0.144 

C I I .6*.4*.4=0.096 

I C C .4*.6*.6=0.144 

I C I .4*.6*.4=0.096 

I I C .4*.4*.6=0.096 

I I I .4*.4*.4=0.064 

Benefits of ensemble learning 

Assume each classifier makes a mistake with some 
probability (e.g. 0.4, that is a 40% error rate) 

model 1 model 2 model 3 prob 

C C C .6*.6*.6=0.216 

C C I .6*.6*.4=0.144 

C I C .6*.4*.6=0.144 

C I I .6*.4*.4=0.096 

I C C .4*.6*.6=0.144 

I C I .4*.6*.4=0.096 

I I C .4*.4*.6=0.096 

I I I .4*.4*.4=0.064 

0.096+ 
0.096+ 
0.096+ 
0.064 =  

35% error!  

Benefits of ensemble learning 

3 classifiers in general, for r = probability of mistake 
for individual classifier: 

p(error) = 3r2 (1− r)+ r3

r p(error) 

0.4 0.35 

0.3 0.22 

0.2 0.10 

0.1 0.028 

0.05 0.0073 

binomial distribution 

Benefits of ensemble learning 

5 classifiers in general, for r = probability of mistake 
for individual classifier: 

p(error) =10r3(1− r)2 + 5r4 (1− r)+ r5

r p(error) 
3 classifiers 

p(error) 
5 classifiers 

0.4 0.35 0.32 

0.3 0.22 0.16 

0.2 0.10 0.06 

0.1 0.028 0.0086 

0.05 0.0073 0.0012 
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Benefits of ensemble learning 

m classifiers in general, for r = probability of mistake 
for individual classifier: 

p(error) = m
i

!

"
#

$

%
&ri (1− r)m−i

i=(m+1)/2

m

∑

(cumulative probability distribution for 
the binomial distribution) 

Given enough classifiers… 
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p(error) = m
i
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m

∑

Obtaining independent classifiers 

Where do we get m independent classifiers? 

Training 
Data 

model 1 learning alg 

learning alg 

…
 

model 2 

learning alg model m 

Idea 1: different learning methods 

decision tree 

k-nn 

perceptron 

naïve bayes 

gradient descent 
variant 1 

gradient descent 
variant 2 

…
 Pros/cons? 

Training 
Data 

model 1 learning alg 

learning alg 

…
 

model 2 

learning alg model m 



11/17/16	
  

5	
  

Idea 1: different learning methods 

Pros: 
! Lots of existing classifiers already 
! Can work well for some problems 
 

Cons/concerns: 
! Often, classifiers are not independent, that is, they 

make the same mistakes! 
! e.g. many of these classifiers are linear models 
! voting won’t help us if they’re making the same mistakes 

Idea 2: split up training data 

Training 
Data 

model 1 learning alg 

…
 

part 1 

…
 

model 2 learning alg part 2 

model m learning alg part m 

Use the same learning algorithm, but train on different 
parts of the training data 

Idea 2: split up training data 

Pros: 
!  Learning from different data, so can’t overfit to same 

examples 
!  Easy to implement 
!  fast 
 

Cons/concerns: 
!  Each classifier is only training on a small amount of data 
! Not clear why this would do any better than training on full 

data and using good regularization 

Idea 3: bagging 

Training 
Data 

model 1 learning alg 

…
 …

 

model m learning alg 

Training 
Data 1 

Training 
Data m 
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data generating distribution 

Training data Test set 

data generating distribution 

Ideal situation 

Training data 1 

data generating distribution 

Training data 2 

… 

bagging 

Training data 

“Training” data 1 

… 

“Training” data 2 

Use training data as a 
proxy for the data 
generating distribution 

sampling with replacements 

Training data 

“Training” data 1 
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sampling with replacements 

Training data 

“Training” data 1 

pick a random example from the 
real training data 

sampling with replacements 

Training data 

“Training” data 1 

add it to the new “training” data 

sampling with replacements 

Training data 

“Training” data 1 

put it back (i.e. leave it) in the 
original training data 

sampling with replacements 

Training data 

“Training” data 1 

pick another random example 
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sampling with replacements 

Training data 

“Training” data 1 

pick another random example 

sampling with replacements 

Training data 

“Training” data 1 

keep going until you’ve created 
a new “training” data set  

bagging 

create m “new” training data sets by sampling with 
replacement from the original training data set (called 
m “bootstrap” samples) 
 
train a classifier on each of these data sets 
 
to classify, take the majority vote from the m classifiers 

bagging concerns 

…
 

Training 
Data 1 

Training 
Data m 

Training 
Data 

Won’t these all be 
basically the same? 
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bagging concerns 

Training data 

For a data set of size n, what is the probability 
that a given example will NOT be select in a 
“new” training set sampled from the original? 

bagging concerns 

Training data 

What is the probability it isn’t chosen the first time? 

1−1/ n

bagging concerns 

Training data 

What is the probability it isn’t chosen the any of the 
n times? 

(1−1/ n)n

Each draw is independent and 
has the same probability 

probability of overlap 
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Converges very quickly to 1/e ≈ 63% 
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bagging overlap 

…
 

Training 
Data 1 

Training 
Data m 

Training 
Data 

Won’t these all be 
basically the same? 

On average, a randomly 
sampled data set will 
only contain 63% of the 
examples in the original 

When does bagging work 

Let’s say 10% of our examples are noisy (i.e. don’t 
provide good information) 
 
For each of the “new” data set, what proportion of noisy 
examples will they have? 

!  They’ll still have ~10% of the examples as noisy 
! However, these examples will only represent about a third 

of the original noisy examples 
 
For some classifiers that have trouble with noisy classifiers, 
this can help 

When does bagging work 

Bagging tends to reduce the variance of the classifier 
 
By voting, the classifiers are more robust to noisy 
examples 
 
Bagging is most useful for classifiers that are: 

! Unstable: small changes in the training set produce very 
different models 

! Prone to overfitting 

Often has similar effect to regularization 
 

Idea 4: boosting 

Data Label 

0 

0 

1 

1 

0 

training data 

Weight 
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0.2 
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“Strong” learner 

Given 
"  a reasonable amount of training data 
"  a target error rate ε 
"  a failure probability p 

A strong learning algorithm will produce a classifier 
with error rate <ε with probability 1-p 

“Weak” learner 

Given 
"  a reasonable amount of training data 
"  a failure probability p 
 
A weak learning algorithm will produce a classifier 
with error rate < 0.5 with probability 1-p 

Weak learners are much easier to create! 

weak learners for boosting 

Data Label 

0 

0 

1 

1 

0 

Weight 

0.2 

0.2 

0.2 

0.2 

0.2 

weak learning 
algorithm 

weak classifier 

Need a weak learning algorithm that 
can handle weighted examples 

Which of our algorithms can 
handle weights? 

boosting: basic algorithm 

Training: 
start with equal example weights 
 
for some number of iterations: 

-  learn a weak classifier and save 
-  change the example weights 

 
Classify: 
-  get prediction from all learned weak classifiers 
-  weighted vote based on how well the weak classifier 

did when it was trained (i.e. in relation to training error) 
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boosting basics 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Start with equal weighted examples 

Learn a weak classifier: weak 1 

Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

weak 1 
We want to reweight the examples and then 
learn another weak classifier 
 
How should we change the example weights? 

classified correct classified incorrect 

Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

-  decrease the weight for those we’re getting correct 
-  increase the weight for those we’re getting incorrect 

Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Learn another weak classifier: weak 2 
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Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

weak 2 

Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

-  decrease the weight for those we’re getting correct 
-  increase the weight for those we’re getting incorrect 

Classifying 

weak 2 

weak 1 prediction 1 

prediction 2 

…
 

weighted vote based on 
how well they classify the 
training data 

weak_2_vote > weak_1_vote 
since it got more right 

Notation 

xi   example i in the training data 
  

wi   weight for example i, we will enforce: 

 

 

 
classifierk(xi)   +1/-1 prediction of classifier k example i 

 

 

 

wi ≥ 0

wii=1

n
∑ =1
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AdaBoost: train 

for k = 1 to iterations: 
-  classifierk = learn a weak classifier based on weights 
-  calculate weighted error for this classifier 

-  calculate “score” for this classifier: 
 
 

-  change the example weights 
 

 

αk =
1
2
log 1−εi

εi

"

#
$

%

&
'

εk = wi *1[labeli ≠ classifierk (xi )]i=1

n
∑

wi =
1
Z
wi exp −αk * labeli *classifierk (xi )( )

AdaBoost: train 

classifierk = learn a weak classifier based on weights 
 
weighted error for this classifier is: 

εk = wi *1[labeli ≠ classifierk (xi )]i=1

n
∑

What does this say? 

AdaBoost: train 

classifierk = learn a weak classifier based on weights 
 
weighted error for this classifier is: 

prediction 

did we get the example wrong 

weighted sum of the errors/mistakes 

What is the range 
of possible values? 

εk = wi *1[labeli ≠ classifierk (xi )]i=1

n
∑

AdaBoost: train 

classifierk = learn a weak classifier based on weights 
 
weighted error for this classifier is: 

prediction 

did we get the example wrong 

weighted sum of the errors/mistakes 

Between 0 (if we 
get all examples 
right) and 1 (if we 
get them all wrong) 

εk = wi *1[labeli ≠ classifierk (xi )]i=1

n
∑
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AdaBoost: train 

classifierk = learn a weak classifier based on weights 
 
“score” or weight for this classifier is: 
 

αk =
1
2
log 1−εi

εi

"

#
$

%

&
'

What does this look like (specifically for errors 
between 0 and 1)? 

AdaBoost: train 

αk =
1
2
log 1−εi

εi

"

#
$

%

&
'

-  ranges from +∞ to -∞ 
-  for most reasonable values: ranges from ~1 to -1 
-  errors of 50% = 0 

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 

AdaBoost: classify 

classify(x) = sign αk *classifierk (x)
k=1

iterations

∑
"

#
$

%

&
'

What does this do? 

AdaBoost: classify 

classify(x) = sign αk *classifierk (x)
k=1

iterations

∑
"

#
$

%

&
'

The weighted vote of the learned classifiers 
weighted by α(remember αgenerally varies 
from ~1 to -1 training error) 
 
What happens if a classifier has error >50% 
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AdaBoost: classify 

classify(x) = sign αk *classifierk (x)
k=1

iterations

∑
"

#
$

%

&
'

The weighted vote of the learned classifiers 
weighted by α(remember αgenerally varies 
from ~1 to -1 training error) 
 
We actually vote the opposite! 

AdaBoost: train, updating the weights 

update the example weights 
 

 
wi =

1
Z
wi exp −αk * labeli *classifierk (xi )( )

Remember, we want to enforce: 

wii=1

n
∑ =1

wi ≥ 0

Z is called the normalizing constant. It is used 
to make sure that the weights sum to 1 

What should it be? 

AdaBoost: train 

update the example weights 
 

 
wi =

1
Z
wi exp −αk * labeli *classifierk (xi )( )

Remember, we want to enforce: 

wii=1

n
∑ =1

wi ≥ 0

normalizing constant (i.e. the sum of the “new” wi): 

Z = wi exp −αk * labeli *classifierk (xi )( )
i=1

n

∑

AdaBoost: train 

update the example weights 
 

 
wi =

1
Z
wi exp −αk * labeli *classifierk (xi )( )

What does this do? 
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AdaBoost: train 

update the example weights 
 

 
wi =

1
Z
wi exp −αk * labeli *classifierk (xi )( )

correct        positive 
incorrect     negative 

correct 
incorrect ? 

AdaBoost: train 

update the example weights 
 

 
wi =

1
Z
wi exp −αk * labeli *classifierk (xi )( )

correct  small value 
incorrect  large value 

Note: only change weights based on current 
classifier (not all previous classifiers) 

correct        positive 
incorrect     negative 

AdaBoost: train 

update the example weights 
 

 
wi =

1
Z
wi exp −αk * labeli *classifierk (xi )( )

What does the αdo?  

AdaBoost: train 

update the example weights 
 

 
wi =

1
Z
wi exp −αk * labeli *classifierk (xi )( )

What does the αdo?  
If the classifier was good (<50% error)αis positive: 

 trust classifier output and move as normal 
If the classifier was back (>50% error)αis negative 

 classifier is so bad, consider opposite prediction of 
 classifier 
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AdaBoost: train 

update the example weights 
 

 
wi =

1
Z
wi exp −αk * labeli *classifierk (xi )( )

correct      positive 
incorrect   negative 

correct  small value 
incorrect  large value 

If the classifier was good (<50% error)αis positive 
If the classifier was back (>50% error)αis negative 

AdaBoost justification 

update the example weights 
 

 
wi =

1
Z
wi exp −αk * labeli *classifierk (xi )( )

Does this look like anything we’ve seen before? 

AdaBoost justification 

update the example weights 
 

 
wi =

1
Z
wi exp −αk * labeli *classifierk (xi )( )

Exponential loss! 

l(y, y ') = exp(−yy ')

AdaBoost turns out to be another approach for 
minimizing the exponential loss! 

Other boosting variants 

Loss 

Correct 

loss 
Mistakes 

Brownboost 

Logitboost 
Adaboost = )( xwye •−

0-1 loss 
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Boosting example 

Start with equal weighted data set 

Boosting example 

h => p(error) = 0.5  it is at chance 

weak learner = line 

What would be the best line 
learned on this data set? 

Boosting example 

This one seems to be the best 
This is a ‘weak classifier’: It performs slightly better than chance. 

How should we reweight 
examples? 

Boosting example 

reds on this side get more weight 
blues on this side get less weight  

reds on this side get less weight 
blues on this side get more weight  

What would be the best line 
learned on this data set? 
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Boosting example 

How should we reweight 
examples? 

Boosting example 

What would be the best line 
learned on this data set? 

Boosting example Boosting example 

The strong (non- linear) classifier is built as the 
combination of all the weak (linear) classifiers. 

f1 f2 

f3 

f4 
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AdaBoost: train 

for k = 1 to iterations: 
-  classifierk = learn a weak classifier based on weights 
-  weighted error for this classifier is: 
-  “score” or weight for this classifier is: 
-  change the example weights 

What can we use as a classifier? 

AdaBoost: train 

for k = 1 to iterations: 
-  classifierk = learn a weak classifier based on weights 
-  weighted error for this classifier is: 
-  “score” or weight for this classifier is: 
-  change the example weights 

-  Anything that can train on weighted examples 
-  For most applications, must be fast! 
     Why? 

AdaBoost: train 

for k = 1 to iterations: 
-  classifierk = learn a weak classifier based on weights 
-  weighted error for this classifier is: 
-  “score” or weight for this classifier is: 
-  change the example weights 

-  Anything that can train on weighted examples 
-  For most applications, must be fast! 

-  Each iteration we have to train a new classifier 

Boosted decision stumps 

One of the most common classifiers to use is a decision 
tree: 

-  can use a shallow (2-3 level tree) 
-  even more common is a 1-level tree 

-  called a decision stump ☺ 
-  asks a question about a single feature 
 

What does the decision boundary look like for a 
decision stump? 
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Boosted decision stumps 

One of the most common classifiers to use is a decision 
tree: 

-  can use a shallow (2-3 level tree) 
-  even more common is a 1-level tree 

-  called a decision stump ☺ 
-  asks a question about a single feature 
 

What does the decision boundary look like for boosted 
decision stumps? 

Boosted decision stumps 

One of the most common classifiers to use is a decision 
tree: 

-  can use a shallow (2-3 level tree) 
-  even more common is a 1-level tree 

-  called a decision stump ☺ 
-  asks a question about a single feature 
 

-  Linear classifier! 
-  Each stump defines the weight for that dimension 

-  If you learn multiple stumps for that dimension then it’s the 
weighted average 

Boosting in practice 

Very successful on a wide range of problems 
 

One of the keys is that boosting tends not to overfit, even for a 
large number of iterations 

Using <10,000 training examples can fit >2,000,000 parameters! 

Adaboost application example:  
face detection 
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Adaboost application example:  
face detection 

To give you some context of importance: 

or: 

“weak” learners 

4 Types of “Rectangle 
filters” (Similar to Haar wavelets  
   Papageorgiou, et al. ) 
 
Based on 24x24 grid: 
160,000 features to choose from g(x) =  

sum(WhiteArea) - sum(BlackArea) 
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“weak” learners 

                 F(x) =       α1 f1(x)    +    α2  f2(x)    +  ... 

fi(x) =    1   if gi(x) > θi 

-1   otherwise 

Example output 

Solving other “Face” Tasks  

Facial Feature Localization 

Demographic 
Analysis 

Profile Detection  

“weak” classifiers learned 
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Bagging vs Boosting 

http://arxiv.org/pdf/1106.0257.pdf 

Boosting Neural Networks 

Ada-Boosting 
Arcing 
Bagging 

White bar represents 1 
standard deviation 

Change in error rate over 
standard classifier  

Boosting Decision Trees 


