
11/17/16	

1	

ENSEMBLE LEARNING
David Kauchak
CS158 – Fall 2016

Admin

Assignment grading

Assignment 9

Midterm 2

Final project

! No formal class Tuesday: figure out project ideas
! 11/23 (Wed) submit project proposal

Quick exercise

Write down on the paper (don’t write your name):
1)  Something you’re happy about right now
2)  Something you’re worried about right now

Fold the piece of paper

I’ll collect them, redistribute them and we’ll read them out
loud

If you don’t want to participate, just leave the paper
blank

Ensemble learning

Basic idea: if one classifier works well, why not use
multiple classifiers!

11/17/16	

2	

Ensemble learning

Basic idea: if one classifier works well, why not use
multiple classifiers!

Training
Data

model 1 learning alg

Training

learning alg

…

model 2

learning alg model m

Ensemble learning

Basic idea: if one classifier works well, why not use
multiple classifiers!

model 1

Testing

model 2

model m

example to
label

…

prediction 1

prediction 2

prediction m

How do we decide on
the final prediction?

Ensemble learning

Basic idea: if one classifier works well, why not use
multiple classifiers!

Testing

prediction 1

prediction 2

prediction m

…

-  take majority vote
-  if they output probabilities,

take a weighted vote

How does having multiple
classifiers help us?

Benefits of ensemble learning

model 1

model 2

Assume each classifier makes a mistake with some
probability (e.g. 0.4, that is a 40% error rate)

model 3

Assuming the decisions made between
classifiers are independent, what will be the
probability that we make a mistake (i.e. error
rate) with three classifiers for a binary
classification problem?

11/17/16	

3	

Benefits of ensemble learning

Assume each classifier makes a mistake with some
probability (e.g. 0.4, that is a 40% error rate)

model 1 model 2 model 3 prob

C C C .6*.6*.6=0.216

C C I .6*.6*.4=0.144

C I C .6*.4*.6=0.144

C I I .6*.4*.4=0.096

I C C .4*.6*.6=0.144

I C I .4*.6*.4=0.096

I I C .4*.4*.6=0.096

I I I .4*.4*.4=0.064

Benefits of ensemble learning

Assume each classifier makes a mistake with some
probability (e.g. 0.4, that is a 40% error rate)

model 1 model 2 model 3 prob

C C C .6*.6*.6=0.216

C C I .6*.6*.4=0.144

C I C .6*.4*.6=0.144

C I I .6*.4*.4=0.096

I C C .4*.6*.6=0.144

I C I .4*.6*.4=0.096

I I C .4*.4*.6=0.096

I I I .4*.4*.4=0.064

0.096+
0.096+
0.096+
0.064 =

35% error!

Benefits of ensemble learning

3 classifiers in general, for r = probability of mistake
for individual classifier:

p(error) = 3r2 (1− r)+ r3

r p(error)

0.4 0.35

0.3 0.22

0.2 0.10

0.1 0.028

0.05 0.0073

binomial distribution

Benefits of ensemble learning

5 classifiers in general, for r = probability of mistake
for individual classifier:

p(error) =10r3(1− r)2 + 5r4 (1− r)+ r5

r p(error)
3 classifiers

p(error)
5 classifiers

0.4 0.35 0.32

0.3 0.22 0.16

0.2 0.10 0.06

0.1 0.028 0.0086

0.05 0.0073 0.0012

11/17/16	

4	

Benefits of ensemble learning

m classifiers in general, for r = probability of mistake
for individual classifier:

p(error) = m
i

!

"
#

$

%
&ri (1− r)m−i

i=(m+1)/2

m

∑

(cumulative probability distribution for
the binomial distribution)

Given enough classifiers…

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 7 13

19

25

31

37

43

49

55

61

67

73

79

85

91

97

10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

r = 0.4

p(error) = m
i

!

"
#

$

%
&ri (1− r)m−i

i=(m+1)/2

m

∑

Obtaining independent classifiers

Where do we get m independent classifiers?

Training
Data

model 1 learning alg

learning alg

…

model 2

learning alg model m

Idea 1: different learning methods

decision tree

k-nn

perceptron

naïve bayes

gradient descent
variant 1

gradient descent
variant 2

…
 Pros/cons?

Training
Data

model 1 learning alg

learning alg

…

model 2

learning alg model m

11/17/16	

5	

Idea 1: different learning methods

Pros:
! Lots of existing classifiers already
! Can work well for some problems

Cons/concerns:
! Often, classifiers are not independent, that is, they

make the same mistakes!
! e.g. many of these classifiers are linear models
! voting won’t help us if they’re making the same mistakes

Idea 2: split up training data

Training
Data

model 1 learning alg

…

part 1

…

model 2 learning alg part 2

model m learning alg part m

Use the same learning algorithm, but train on different
parts of the training data

Idea 2: split up training data

Pros:
!  Learning from different data, so can’t overfit to same

examples
!  Easy to implement
!  fast

Cons/concerns:
!  Each classifier is only training on a small amount of data
! Not clear why this would do any better than training on full

data and using good regularization

Idea 3: bagging

Training
Data

model 1 learning alg

…
 …

model m learning alg

Training
Data 1

Training
Data m

11/17/16	

6	

data generating distribution

Training data Test set

data generating distribution

Ideal situation

Training data 1

data generating distribution

Training data 2

…

bagging

Training data

“Training” data 1

…

“Training” data 2

Use training data as a
proxy for the data
generating distribution

sampling with replacements

Training data

“Training” data 1

11/17/16	

7	

sampling with replacements

Training data

“Training” data 1

pick a random example from the
real training data

sampling with replacements

Training data

“Training” data 1

add it to the new “training” data

sampling with replacements

Training data

“Training” data 1

put it back (i.e. leave it) in the
original training data

sampling with replacements

Training data

“Training” data 1

pick another random example

11/17/16	

8	

sampling with replacements

Training data

“Training” data 1

pick another random example

sampling with replacements

Training data

“Training” data 1

keep going until you’ve created
a new “training” data set

bagging

create m “new” training data sets by sampling with
replacement from the original training data set (called
m “bootstrap” samples)

train a classifier on each of these data sets

to classify, take the majority vote from the m classifiers

bagging concerns

…

Training
Data 1

Training
Data m

Training
Data

Won’t these all be
basically the same?

11/17/16	

9	

bagging concerns

Training data

For a data set of size n, what is the probability
that a given example will NOT be select in a
“new” training set sampled from the original?

bagging concerns

Training data

What is the probability it isn’t chosen the first time?

1−1/ n

bagging concerns

Training data

What is the probability it isn’t chosen the any of the
n times?

(1−1/ n)n

Each draw is independent and
has the same probability

probability of overlap

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 4 7 10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

85

88

91

94

97

10
0

Converges very quickly to 1/e ≈ 63%

(1−1/ n)n

p(
no

t c
ho

se
n)

11/17/16	

10	

bagging overlap

…

Training
Data 1

Training
Data m

Training
Data

Won’t these all be
basically the same?

On average, a randomly
sampled data set will
only contain 63% of the
examples in the original

When does bagging work

Let’s say 10% of our examples are noisy (i.e. don’t
provide good information)

For each of the “new” data set, what proportion of noisy
examples will they have?

!  They’ll still have ~10% of the examples as noisy
! However, these examples will only represent about a third

of the original noisy examples

For some classifiers that have trouble with noisy classifiers,
this can help

When does bagging work

Bagging tends to reduce the variance of the classifier

By voting, the classifiers are more robust to noisy
examples

Bagging is most useful for classifiers that are:

! Unstable: small changes in the training set produce very
different models

! Prone to overfitting

Often has similar effect to regularization

Idea 4: boosting

Data Label

0

0

1

1

0

training data

Weight

0.2

0.2

0.2

0.2

0.2

Data Label

0

0

1

1

0

“training” data 2

0.1

0.1

0.4

0.1

0.3

Data Label

0

0

1

1

0

“training” data 3

0.05

0.2

0.2

0.05

0.5

Weight Weight

11/17/16	

11	

“Strong” learner

Given
"  a reasonable amount of training data
"  a target error rate ε
"  a failure probability p

A strong learning algorithm will produce a classifier
with error rate <ε with probability 1-p

“Weak” learner

Given
"  a reasonable amount of training data
"  a failure probability p

A weak learning algorithm will produce a classifier
with error rate < 0.5 with probability 1-p

Weak learners are much easier to create!

weak learners for boosting

Data Label

0

0

1

1

0

Weight

0.2

0.2

0.2

0.2

0.2

weak learning
algorithm

weak classifier

Need a weak learning algorithm that
can handle weighted examples

Which of our algorithms can
handle weights?

boosting: basic algorithm

Training:
start with equal example weights

for some number of iterations:

-  learn a weak classifier and save
-  change the example weights

Classify:
-  get prediction from all learned weak classifiers
-  weighted vote based on how well the weak classifier

did when it was trained (i.e. in relation to training error)

11/17/16	

12	

boosting basics

E1 E2 E3 E4 E5 Examples:

Weights:

Start with equal weighted examples

Learn a weak classifier: weak 1

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

weak 1
We want to reweight the examples and then
learn another weak classifier

How should we change the example weights?

classified correct classified incorrect

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

-  decrease the weight for those we’re getting correct
-  increase the weight for those we’re getting incorrect

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Learn another weak classifier: weak 2

11/17/16	

13	

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

weak 2

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

-  decrease the weight for those we’re getting correct
-  increase the weight for those we’re getting incorrect

Classifying

weak 2

weak 1 prediction 1

prediction 2

…

weighted vote based on
how well they classify the
training data

weak_2_vote > weak_1_vote
since it got more right

Notation

xi example i in the training data

wi weight for example i, we will enforce:

classifierk(xi) +1/-1 prediction of classifier k example i

wi ≥ 0

wii=1

n
∑ =1

11/17/16	

14	

AdaBoost: train

for k = 1 to iterations:
-  classifierk = learn a weak classifier based on weights
-  calculate weighted error for this classifier

-  calculate “score” for this classifier:

-  change the example weights

αk =
1
2
log 1−εi

εi

"

#
$

%

&
'

εk = wi *1[labeli ≠ classifierk (xi)]i=1

n
∑

wi =
1
Z
wi exp −αk * labeli *classifierk (xi)()

AdaBoost: train

classifierk = learn a weak classifier based on weights

weighted error for this classifier is:

εk = wi *1[labeli ≠ classifierk (xi)]i=1

n
∑

What does this say?

AdaBoost: train

classifierk = learn a weak classifier based on weights

weighted error for this classifier is:

prediction

did we get the example wrong

weighted sum of the errors/mistakes

What is the range
of possible values?

εk = wi *1[labeli ≠ classifierk (xi)]i=1

n
∑

AdaBoost: train

classifierk = learn a weak classifier based on weights

weighted error for this classifier is:

prediction

did we get the example wrong

weighted sum of the errors/mistakes

Between 0 (if we
get all examples
right) and 1 (if we
get them all wrong)

εk = wi *1[labeli ≠ classifierk (xi)]i=1

n
∑

11/17/16	

15	

AdaBoost: train

classifierk = learn a weak classifier based on weights

“score” or weight for this classifier is:

αk =
1
2
log 1−εi

εi

"

#
$

%

&
'

What does this look like (specifically for errors
between 0 and 1)?

AdaBoost: train

αk =
1
2
log 1−εi

εi

"

#
$

%

&
'

-  ranges from +∞ to -∞
-  for most reasonable values: ranges from ~1 to -1
-  errors of 50% = 0

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

AdaBoost: classify

classify(x) = sign αk *classifierk (x)
k=1

iterations

∑
"

#
$

%

&
'

What does this do?

AdaBoost: classify

classify(x) = sign αk *classifierk (x)
k=1

iterations

∑
"

#
$

%

&
'

The weighted vote of the learned classifiers
weighted by α(remember αgenerally varies
from ~1 to -1 training error)

What happens if a classifier has error >50%

11/17/16	

16	

AdaBoost: classify

classify(x) = sign αk *classifierk (x)
k=1

iterations

∑
"

#
$

%

&
'

The weighted vote of the learned classifiers
weighted by α(remember αgenerally varies
from ~1 to -1 training error)

We actually vote the opposite!

AdaBoost: train, updating the weights

update the example weights

wi =

1
Z
wi exp −αk * labeli *classifierk (xi)()

Remember, we want to enforce:

wii=1

n
∑ =1

wi ≥ 0

Z is called the normalizing constant. It is used
to make sure that the weights sum to 1

What should it be?

AdaBoost: train

update the example weights

wi =

1
Z
wi exp −αk * labeli *classifierk (xi)()

Remember, we want to enforce:

wii=1

n
∑ =1

wi ≥ 0

normalizing constant (i.e. the sum of the “new” wi):

Z = wi exp −αk * labeli *classifierk (xi)()
i=1

n

∑

AdaBoost: train

update the example weights

wi =

1
Z
wi exp −αk * labeli *classifierk (xi)()

What does this do?

11/17/16	

17	

AdaBoost: train

update the example weights

wi =

1
Z
wi exp −αk * labeli *classifierk (xi)()

correct positive
incorrect negative

correct
incorrect ?

AdaBoost: train

update the example weights

wi =

1
Z
wi exp −αk * labeli *classifierk (xi)()

correct small value
incorrect large value

Note: only change weights based on current
classifier (not all previous classifiers)

correct positive
incorrect negative

AdaBoost: train

update the example weights

wi =

1
Z
wi exp −αk * labeli *classifierk (xi)()

What does the αdo?

AdaBoost: train

update the example weights

wi =

1
Z
wi exp −αk * labeli *classifierk (xi)()

What does the αdo?
If the classifier was good (<50% error)αis positive:

 trust classifier output and move as normal
If the classifier was back (>50% error)αis negative

 classifier is so bad, consider opposite prediction of
 classifier

11/17/16	

18	

AdaBoost: train

update the example weights

wi =

1
Z
wi exp −αk * labeli *classifierk (xi)()

correct positive
incorrect negative

correct small value
incorrect large value

If the classifier was good (<50% error)αis positive
If the classifier was back (>50% error)αis negative

AdaBoost justification

update the example weights

wi =

1
Z
wi exp −αk * labeli *classifierk (xi)()

Does this look like anything we’ve seen before?

AdaBoost justification

update the example weights

wi =

1
Z
wi exp −αk * labeli *classifierk (xi)()

Exponential loss!

l(y, y ') = exp(−yy ')

AdaBoost turns out to be another approach for
minimizing the exponential loss!

Other boosting variants

Loss

Correct

loss
Mistakes

Brownboost

Logitboost
Adaboost =)(xwye •−

0-1 loss

11/17/16	

19	

Boosting example

Start with equal weighted data set

Boosting example

h => p(error) = 0.5 it is at chance

weak learner = line

What would be the best line
learned on this data set?

Boosting example

This one seems to be the best
This is a ‘weak classifier’: It performs slightly better than chance.

How should we reweight
examples?

Boosting example

reds on this side get more weight
blues on this side get less weight

reds on this side get less weight
blues on this side get more weight

What would be the best line
learned on this data set?

11/17/16	

20	

Boosting example

How should we reweight
examples?

Boosting example

What would be the best line
learned on this data set?

Boosting example Boosting example

The strong (non- linear) classifier is built as the
combination of all the weak (linear) classifiers.

f1 f2

f3

f4

11/17/16	

21	

AdaBoost: train

for k = 1 to iterations:
-  classifierk = learn a weak classifier based on weights
-  weighted error for this classifier is:
-  “score” or weight for this classifier is:
-  change the example weights

What can we use as a classifier?

AdaBoost: train

for k = 1 to iterations:
-  classifierk = learn a weak classifier based on weights
-  weighted error for this classifier is:
-  “score” or weight for this classifier is:
-  change the example weights

-  Anything that can train on weighted examples
-  For most applications, must be fast!
 Why?

AdaBoost: train

for k = 1 to iterations:
-  classifierk = learn a weak classifier based on weights
-  weighted error for this classifier is:
-  “score” or weight for this classifier is:
-  change the example weights

-  Anything that can train on weighted examples
-  For most applications, must be fast!

-  Each iteration we have to train a new classifier

Boosted decision stumps

One of the most common classifiers to use is a decision
tree:

-  can use a shallow (2-3 level tree)
-  even more common is a 1-level tree

-  called a decision stump ☺
-  asks a question about a single feature

What does the decision boundary look like for a
decision stump?

11/17/16	

22	

Boosted decision stumps

One of the most common classifiers to use is a decision
tree:

-  can use a shallow (2-3 level tree)
-  even more common is a 1-level tree

-  called a decision stump ☺
-  asks a question about a single feature

What does the decision boundary look like for boosted
decision stumps?

Boosted decision stumps

One of the most common classifiers to use is a decision
tree:

-  can use a shallow (2-3 level tree)
-  even more common is a 1-level tree

-  called a decision stump ☺
-  asks a question about a single feature

-  Linear classifier!
-  Each stump defines the weight for that dimension

-  If you learn multiple stumps for that dimension then it’s the
weighted average

Boosting in practice

Very successful on a wide range of problems

One of the keys is that boosting tends not to overfit, even for a
large number of iterations

Using <10,000 training examples can fit >2,000,000 parameters!

Adaboost application example:
face detection

11/17/16	

23	

Adaboost application example:
face detection

To give you some context of importance:

or:

“weak” learners

4 Types of “Rectangle
filters” (Similar to Haar wavelets
 Papageorgiou, et al.)

Based on 24x24 grid:
160,000 features to choose from g(x) =

sum(WhiteArea) - sum(BlackArea)

11/17/16	

24	

“weak” learners

 F(x) = α1 f1(x) + α2 f2(x) + ...

fi(x) = 1 if gi(x) > θi

-1 otherwise

Example output

Solving other “Face” Tasks

Facial Feature Localization

Demographic
Analysis

Profile Detection

“weak” classifiers learned

11/17/16	

25	

Bagging vs Boosting

http://arxiv.org/pdf/1106.0257.pdf

Boosting Neural Networks

Ada-Boosting
Arcing
Bagging

White bar represents 1
standard deviation

Change in error rate over
standard classifier

Boosting Decision Trees

