

Admin

Assignment 7

Assignment 8

No office hours Thursday Wednesday office hours extended 2-5pm

Deep learning

Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high level abstractions in data by using a deep graph with multiple processing layers, composed of multiple linear and non-linear transformations.

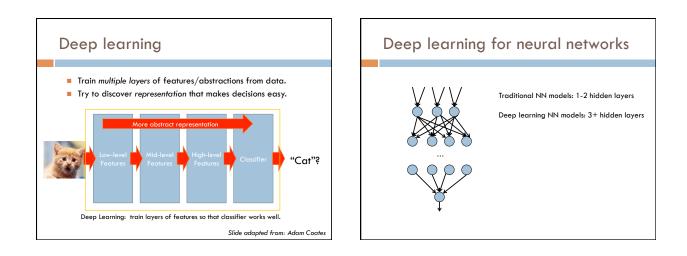
Deep learning is part of a broader family of machine learning methods based on learning representations of data.

Deep learning

Key: learning better features that abstract from the "raw" data

Using learned feature representations based on large amounts of data, generally unsupervised

Using classifiers with multiple layers of learning



Geoffrey Hinton

I now work part-time for Google as an Engineering Fellow and part-time for the University of Toronto as an Emeritus Distinguished Professor. For much of the year, I work at the University in the morning and at the Google Toronto office at 111 Richmond Street from 2.00pm to 6.00pm. I also spend several months per year working full-time for Google in Mountain View, California.

http://www.cs.toronto.edu/~hinton/

Geoffrey Hinton

Geoffrey Everest Hinton FRS⁽⁶⁾ (born 6 December 1947) is a British-born cognitive psychologist and computer scientist, most noted for his work on artificial neural networks. As of 2015 he divides his time working for Google and University of Toronto.^[7] He was one of the first researchers who demonstrated the use of generalized backpropagation algorithm for training multi-layer neural nets and is an important figure in the deep learning community.^{[8][9][10]}

Hinton is the great-great-grandson both of logician George Boole whose work eventually became one of the foundations of modern computer science, and of surgeon and author James Hinton.^[22] His father is Howard Hinton.^[23]

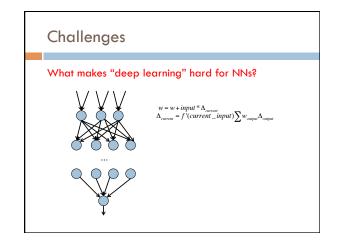
https://en.wikipedia.org/wiki/Geoffrey_Hinton

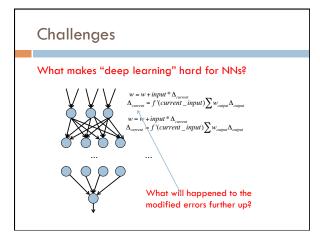
Importance of features: Hinton

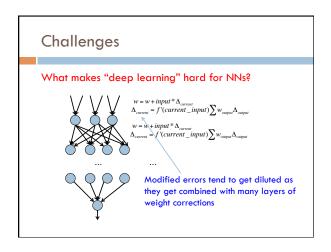
Once you have the right features, the algorithm you pick is relatively unimportant

Normal process = hand-crafted features

Deep learning: find algorithms to automatically discover features from the data







Deep learning

Growing field

Driven by:

- Increase in data availability
- Increase in computational power
- Parallelizability of many of the algorithms

Involves more than just neural networks (though, they're a very popular model)

word2vec

How many people have heard of it?

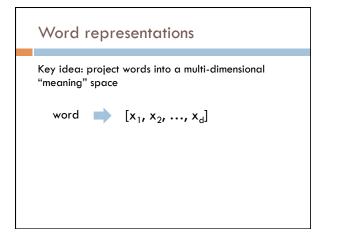
What is it?

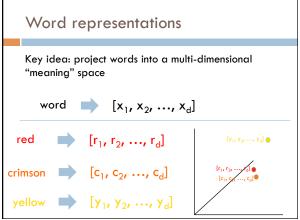
Word representations

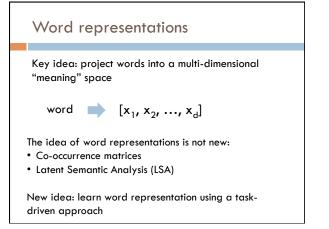
Wine data uses word occurrences as a feature

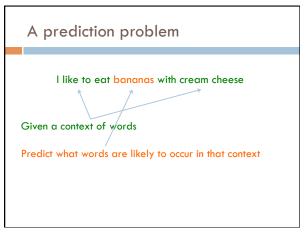
What does this miss?

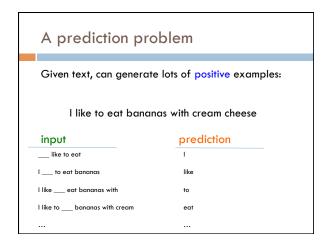
Word representations Wine data uses word occurrences as a feature What does this miss? "The wine had a dark red color" Zinfandel "The wine was a deep crimson color" Iabel? "The wine was a deep yellow color" Iabel? Would like to recognize that words have similar meaning even though they aren't lexically the same

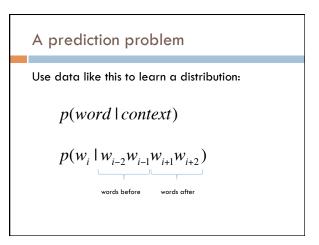






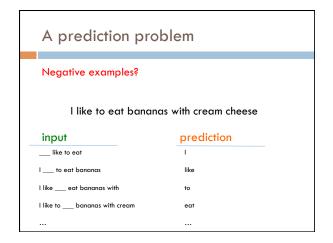




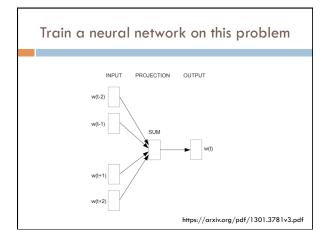


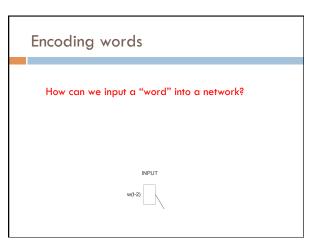
A prediction pro	blem
Any problems with using	g only positive examples?
$p(w_i \mid w_{i-2}w)$	$(w_{i-1}w_{i+1}w_{i+2})$
input	prediction
input like to eat	prediction
•	prediction I
like to eat	1
like to eat	l like

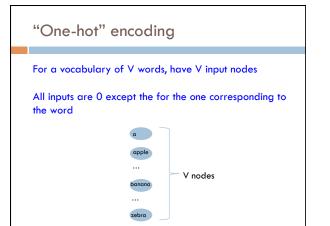
A prediction pro	blem	
Want to learn a distrib	ution over all words	
$p(w_i) w_{i-2} w$, w, w,)	
$P(m; m; \gamma m)$	$+ 1^{\mu}$ $+ 1^{\mu}$ $+ 1^{\mu}$ $+ 2^{\mu}$	
$P(\mathbf{v}_i) \cdot \mathbf{v}_{i-2}$	<i>i</i> -1 <i>i</i> +1 <i>i</i> +2	
input	prediction	
input		
input like to eat	prediction	
input like to eat I to eat bananas	I like	

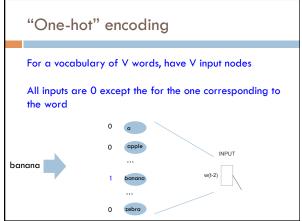


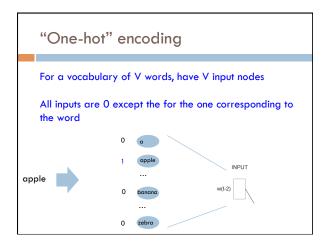
A prediction pro	oblem
Use random words to g	enerate negative examples
l like to eat bana	nas with cream cheese
input	prediction (negative)
input like to eat	prediction (negative)
· · ·	· · · · ·
like to eat	car
like to eat	car snoopy

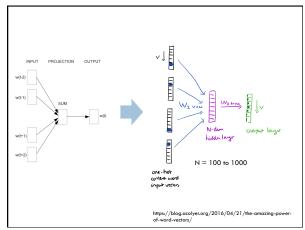


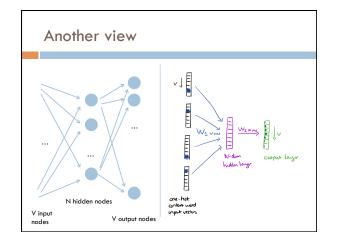


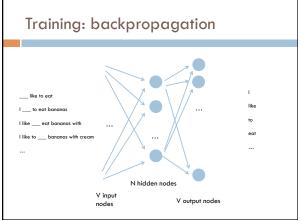


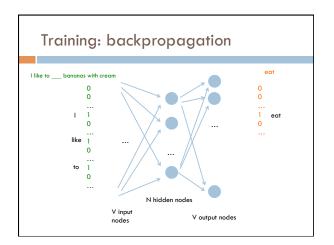


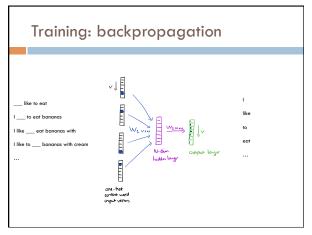


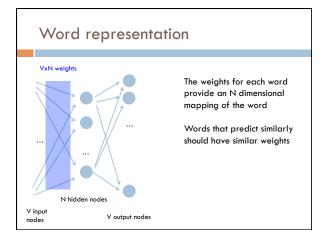












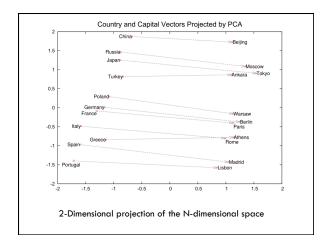
Results				
vector(word1) – v	ector(wo	rd2) = ve	ctor(wor	d3) - X
word1 is to	word2 as v	word3 is to	x	
word1 is to y		word3 is to Pair 1		rd Pair 2
				rd Pair 2 Norway
Type of relationship	Word	Pair 1	Wo	
Type of relationship Common capital city	Word	Pair 1 Greece	Wo Oslo	Norway
Type of relationship Common capital city All capital cities	Word Athens Astana	Pair 1 Greece Kazakhstan	Wor Oslo Harare	Norway Zimbabwe

Results				
ctor(word1) –	vectorius	rd2) – v	octorluca	(12) V
	•	•	•	u3) - x
word1 is to	word2 as	word3 is to	X	
Type of relationship	Word	Pair 1	Wor	d Pair 2
Adjective to adverb	apparent	apparently	rapid	rapidly
Opposite	possibly	impossibly	ethical	unethical
Comparative	great	greater	tough	tougher
-	easy	easiest	lucky	luckiest
Superlative	think	thinking	read	reading
Superlative Present Participle				
	Switzerland	Swiss	Cambodia	Cambodian
Present Participle	Switzerland walking	Swiss walked	Cambodia swimming	Cambodian swam
Present Participle Nationality adjective				

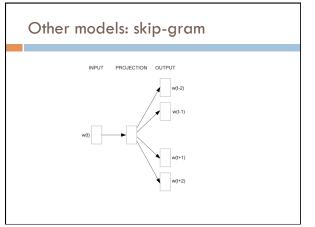
Results

vector(word1) - vector(word2) = vector(word3) - X word1 is to word2 as word3 is to X

	Newspaper	'S	
New York	New York Times	Baltimore	Baltimore Sun
San Jose	San Jose Mercury News	Cincinnati	Cincinnati Enquirer
	NHL Team	15	
Boston	Boston Bruins	Montreal	Montreal Canadiens
Phoenix	Phoenix Coyotes	Nashville	Nashville Predators
	NBA Team	1S	
Detroit	Detroit Pistons	Toronto	Toronto Raptors
Oakland	Golden State Warriors	Memphis	Memphis Grizzlies
	Airlines		
Austria	Austrian Airlines	Spain	Spainair
Belgium	Brussels Airlines	Greece	Aegean Airlines
	Company exec	utives	
Steve Ballmer	Microsoft	Larry Page	Google
Samuel J. Palmisano	IBM	Werner Vogels	Amazon







word2vec A model for learning word representations from large amounts of data Has become a popular pre-processing step for learning a more robust feature representation Models like word2vec have also been incorporated into other learning approaches (e.g. translation tasks)

word2vec resources

- https://blog.acolyer.org/2016/04/21/theamazing-power-of-word-vectors/
- https://code.google.com/archive/p/word2vec/
- □ https://deeplearning4j.org/word2vec
- https://arxiv.org/pdf/1301.3781v3.pdf

Big Data

What is "big data"?

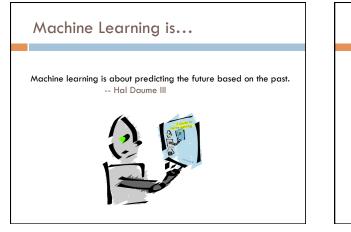
What are some sources of big data?

What are the challenges of dealing with big data?

What are some of the tools you've heard of?

Big data and ML

Why talk about it in a course like this?

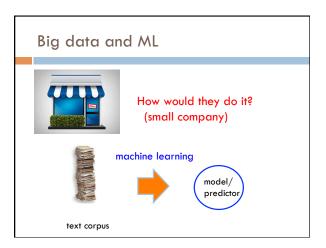


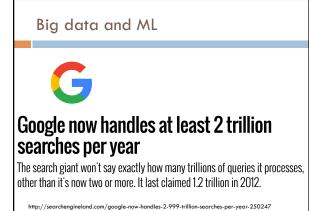
Machine Learning is...

Machine learning is about predicting the future based on the past. -- Hal Daume III

If the "past" has lots of data, then we need tools to process it!

ig	da	ta a	ind	ML			
/hy	talk o	about	it in o	a cour	se like	e this?	
Mar	ıy "me	achine	e learı	ning"	proble	ems becor	ne
			ien yo	ou hav	e lots	of data	
	h eas		ien yo	ou hav	e lots	of data	<mark>ب</mark> م
			Books	Images	e lots	of data Search tools	\$ Q
mac All	h ine lerni i News	ng	Books				\$ Q





 Search logs

 user_id time query

 ...

 131524
 t
 bna republic

 ...

 131524
 t+5s
 banana republic

 ...

 131524
 t+5s
 banana republic

 ...

 Many problems get easy when you have lots of data!

