Priors

Coin1 data: 3 Heads and 1 Tail
Coin2 data: 30 Heads and 10 tails
Coin3 data: 2 Tails
Coin4 data: 497 Heads and 503 tails

If someone asked you what the probability of heads was for each of these coins, what would you say?

Basic steps for probabilistic modeling

Step 1: pick a model

Step 2: figure out how to estimate the probabilities for the model

Step 3 (optional): deal with overfitting

Probabilistic models

Which model do we use, i.e. how do we calculate p(feature, label)?

How do train the model, i.e. how do we estimate the probabilities for the model?

How do we deal with overfitting?
Training revisited

What we’re really doing during training is selecting the Θ that maximizes:

$$p(\theta | \text{data})$$

i.e.

$$\theta = \arg \max_{\theta} p(\theta | \text{data})$$

That is we pick the most likely model parameters given the data.

Estimating revisited

We want to incorporate a prior belief of what the probabilities might be.

To do this, we need to break down our probability

$$p(\theta | \text{data}) = ?$$

[Hint: Bayes rule]

Estimating revisited

What are each of these probabilities?

$$p(\theta | \text{data}) = \frac{p(\text{data} | \theta)p(\theta)}{p(\text{data})}$$

Priors

 likelihood of the data under the model

probability of different parameters, call the prior

$$p(\theta | \text{data}) = \frac{p(\text{data} | \theta)p(\theta)}{p(\text{data})}$$

probability of seeing the data (regardless of model)
Priors

\[
\theta = \arg\max_{\theta} \frac{p(\text{data} \mid \theta)p(\theta)}{p(\text{data})}
\]

Does \(p(\text{data})\) matter for the \(\arg\max\)?

Priors

\[
\theta = \arg\max_{\theta} p(\text{data} \mid \theta)p(\theta)
\]

What does MLE assume for a prior on the model parameters?

Priors

- Assumes a uniform prior, i.e. all \(\Theta\) are equally likely!
- Relies solely on the likelihood

A better approach

\[
\theta = \arg\max_{\theta} \frac{p(\text{data} \mid \theta)p(\theta)}{p(\text{data})} = \arg\max_{\theta} p(\text{data} \mid \theta)p(\theta)
\]

\[
\text{likelihood}(\text{data}) = \prod_{i} p(x_i)
\]

We can use any distribution we’d like. This allows us to impart additional bias into the model.
Another view on the prior

Remember, the max is the same if we take the log:

\[\theta = \arg\max \log(p(\text{data} | \theta)) + \log(p(\theta)) \]

log-likelihood = \(\sum \log(p(x_i)) \)
We can use any distribution we’d like.
This allows us to impart additional bias into the model.

Does this look like something we’ve seen before?

Regularization vs prior

\[\theta = \arg\max \log(p(\text{data} | \theta)) + \log(p(\theta)) \]

\[\text{argmin}_{w} \sum \text{loss}(y_i) + \lambda \text{regularizer}(w) \]

Prior for NB

\[\theta = \arg\max \log(p(\text{data} | \theta)) + \log(p(\theta)) \]

<table>
<thead>
<tr>
<th>Uniform prior</th>
<th>Dirichlet prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(x, y) = \frac{\text{count}(x, y)}{\text{count}(y)})</td>
<td>(p(x, y) = \frac{\text{count}(x, y) + \lambda}{\text{count}(y) + \lambda \cdot \text{possible values of } x})</td>
</tr>
</tbody>
</table>

MLE: \(p(x, y) = \frac{\text{count}(x, y)}{\text{count}(y)} \)

What happens to our likelihood if, for one of the labels, we never saw a particular feature?

Goes to 0!
Prior: another view

\[
p(x, y) = \frac{\text{count}(x, y)}{\text{count}(y)}
\]

\[
p(x, y) = \frac{\text{count}(x, y) + \lambda}{\text{count}(y) + \text{possible values of } x + \lambda}
\]

Adding a prior avoids this!

Smoothing

\[
p(x, y) = \frac{\text{count}(x, y)}{\text{count}(y)}
\]

\[
p(x, y) = \frac{\text{count}(x, y) + \lambda}{\text{count}(y) + \text{possible values of } x + \lambda}
\]

for each label, pretend like we've seen each feature value occur in \(\lambda \) additional examples

Sometimes this is also called smoothing because it is seen as smoothing or interpolating between the MLE and some other distribution

Basic steps for probabilistic modeling

<table>
<thead>
<tr>
<th>Step 1: pick a model</th>
<th>Step 2: figure out how to estimate the probabilities for the model</th>
</tr>
</thead>
</table>

Joint models vs conditional models

We've been trying to model the joint distribution (i.e. the data generating distribution):

\[
p(x_1, x_2, \ldots, x_m, y)
\]

However, if all we're interested in is classification, why not directly model the conditional distribution:

\[
p(y \mid x_1, x_2, \ldots, x_m)
\]
A first try: linear

\[p(y \mid x_1, x_2, \ldots, x_m) = x_1 w_1 + w_2 x_2 + \ldots + w_m x_m + b \]

Any problems with this?

- Nothing constrains it to be a probability
- Could still have combination of features and weight that exceeds 1 or is below 0

The challenge

\[x_1 w_1 + w_2 x_2 + \ldots + w_m x_m + b \]

Linear model

\[p(y \mid x_1, x_2, \ldots, x_m) \]

probability

We like linear models!

Can we transform the probability into a function that ranges over all values?

Odds ratio

Rather than predict the probability, we can predict the ratio of 1/0 (positive/negative)

Predict the odds that it is 1 (true): How much more likely is 1 than 0.

Does this help us?

\[\frac{P(1 \mid x_1, x_2, \ldots, x_m)}{P(0 \mid x_1, x_2, \ldots, x_m)} = \frac{P(1 \mid x_1, x_2, \ldots, x_m)}{1 - P(1 \mid x_1, x_2, \ldots, x_m)} = x_1 w_1 + w_2 x_2 + \ldots + w_m x_m + b \]
Odds ratio

\[
P(1|x_1, x_2, ..., x_m) \rightarrow P(0|x_1, x_2, ..., x_m) \quad \frac{P(1|x_1, x_2, ..., x_m)}{1 - P(1|x_1, x_2, ..., x_m)}
\]

We're trying to find some transformation that transforms the odds ratio to a number that is \(\infty\) to \(+\infty\).

Does this suggest another transformation?

Log odds (logit function)

Log odds (logit function)

\[
\log \left(\frac{P(1|x_1, x_2, ..., x_m)}{1 - P(1|x_1, x_2, ..., x_m)} \right) = w_1 x_1 + w_2 x_2 + ... + w_n x_n + b
\]

Linear regression

How do we get the probability of an example?

\[
P(1|x_1, x_2, ..., x_m) = \frac{1}{1 + e^{-(w_1 x_1 + w_2 x_2 + ... + w_n x_n + b)}}
\]

\[
P(0|x_1, x_2, ..., x_m) = (1 - P(1|x_1, x_2, ..., x_m)) e^{-(w_1 x_1 + w_2 x_2 + ... + w_n x_n + b)}
\]

\[
P(1|x_1, x_2, ..., x_m) = \frac{1}{1 + e^{-(w_1 x_1 + w_2 x_2 + ... + w_n x_n + b)}}
\]

anyone recognize this?
Logistic function

$$\text{logistic} = \frac{1}{1 + e^x}$$

Logistic regression

How would we classify examples once we had a trained model?

If the sum > 0 then $p(1)/p(0) > 1$, so positive

If the sum < 0 then $p(1)/p(0) < 1$, so negative

Still a linear classifier (decision boundary is a line)

Training logistic regression models

How should we learn the parameters for logistic regression (i.e. the w’s and b)?

$$\log \frac{P(1|x_1, x_2, ..., x_m)}{1-P(1|x_1, x_2, ..., x_m)} = w_1 x_2 + w_2 x_2 + ... + w_m x_m + b$$

MLE logistic regression

Find the parameters that maximize the likelihood (or log-likelihood) of the data:

$$\text{log-likelihood} = \sum_{i=1}^{n} \log(p(y_i|x_i))$$

$$= \sum_{i=1}^{n} \log\left(\frac{1}{1 + e^{-y_i(w_1 x_2 + w_2 x_2 + ... + w_m x_m + b)}} \right)$$

Assume labels 1, -1

$$= \sum_{i=1}^{n} -\log(1 + e^{-y_i(w_1 x_2 + w_2 x_2 + ... + w_m x_m + b)})$$
MLE logistic regression

log-likelihood = \(\sum_{i=1}^{n} \log(1 + e^{-y_i(w_1x_2 + w_2x_2 + \ldots + w_mx_m + b)}) \)

We want to maximize, i.e.

\[\text{MLE(data)} = \arg \max_{w, b} \text{log-likelihood(data)} \]

\[= \arg \max_{w, b} \sum_{i=1}^{n} \log(1 + e^{-y_i(w_1x_2 + w_2x_2 + \ldots + w_mx_m + b)}) \]

\[= \arg \min_{w, b} \sum_{i=1}^{n} \log(1 + e^{y_i(w_1x_2 + w_2x_2 + \ldots + w_mx_m + b)}) \]

Look familiar? Hint: anybody read the book?

Logistic regression: three views

linear classifier

\[\log \frac{P(1|x_1, x_2, \ldots, x_n)}{1 - P(1|x_1, x_2, \ldots, x_n)} = w_0 + w_1x_2 + w_2x_2 + \ldots + w_mx_m \]

conditional model

\[P(1|x_1, x_2, \ldots, x_n) = \frac{1}{1 + e^{-w_0 - w_1x_2 - w_2x_2 - \ldots - w_mx_m}} \]

logistic

\[\arg \min_{w, b} \sum \log(1 + e^{-y_i(w_1x_2 + w_2x_2 + \ldots + w_mx_m + b)}) \]

linear model minimizing logistic loss

Overfitting

\[\arg \min_{w, b} \sum \log(1 + e^{-y_i(w_1x_2 + w_2x_2 + \ldots + w_mx_m + b)}) \]

If we minimize this loss function, in practice, the results aren’t great and we tend to overfit

Solution?
Regularization/prior

\[
\begin{align*}
\text{argmin}_{w,b} & \sum_{i=1}^{n} \log(1 + e^{-(y_i(w^T x_i + b))}) + \lambda \text{regularizer}(w,b) \\
\text{or} \\
\text{argmin}_{w,b} & \sum_{i=1}^{n} \log(1 + e^{-(y_i(w^T x_i + b))}) - \log(p(w,b))
\end{align*}
\]

What are some of the regularizers we know?

L2 regularization:

Gaussian prior:

\[
p(w,b) \sim \mathcal{N}(0, \sigma^2)
\]

\[
\lambda = \frac{1}{2\sigma^2}
\]

Does the \(\lambda \) make sense?

Regularization/prior

L2 regularization:

Gaussian prior:
Regularization/prior

L1 regularization:

\[
\text{argmin}_{\theta} \sum_{i=1}^{n} \log(1 + e^{-y_i(w_1 x_2 + w_2 x_2 + \ldots + w_m x_m + b)}) + \lambda \| \theta \|
\]

Laplacian prior:

\[p(w,b) \sim \sigma(w,b)\]

\[\lambda = \frac{1}{2\sigma^2}\]

L1 vs. L2

L1 = Laplacian prior
L2 = Gaussian prior

Logistic regression

Why is it called logistic regression?
It is a classifier??

\[
\log \frac{P(y=1|x_1, x_2, \ldots, x_n)}{1 - P(y=1|x_1, x_2, \ldots, x_n)} = w_1 x_1 + w_2 x_2 + \ldots + w_m x_m + b
\]
A digression: regression vs. classification

<table>
<thead>
<tr>
<th>Raw data</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>features</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1, f_2, f_3, ..., f_n</td>
<td>classification: discrete (some finite set of labels)</td>
</tr>
<tr>
<td>f_1, f_2, f_3, ..., f_n</td>
<td>regression: real value</td>
</tr>
</tbody>
</table>

Linear regression

Given some points, find the line that best fits/explains the data.

Our model is a line, i.e. we’re assuming a linear relationship between the feature and the label value.

$h(y) = w_1 x_1 + b$

How can we find this line?

Linear regression

Learn a line h that minimizes some loss/error function.

$error(h) = ?$

Sum of the individual errors:

$error(h) = \sum_{i=1}^{n} |y_i - h(f_i)|$

0/1 loss!

Error minimization

How do we find the minimum of an equation?

$error(h) = \sum_{i=1}^{n} |y_i - h(f_i)|$

Take the derivative, set to 0 and solve (going to be a min or a max)

Any problems here?

Ideas?
Linear regression

Learn a line h that minimizes an error function:

$$\text{error}(h) = \sum_{i=1}^{n} (y_i - h(f_i))^2$$

in the case of a 2d line:

$$\text{error}(h) = \sum_{i=1}^{n} (y_i - (w_1 x_i + w_0))^2$$

Squared error is convex!

Squared: $\text{error}(y, \hat{y}) = (y - \hat{y})^2$

Linear regression

We’d like to minimize the error

Find w_1 and w_0 such that the error is minimized

$$\text{error}(h) = \sum_{i=1}^{n} (y_i - (w_1 f_i + w_0))^2$$

We can solve this in closed form

Multiple linear regression

If we have m features, then we have a line in m dimensions

$$h(\hat{f}) = w_0 + w_1 f_1 + w_2 f_2 + ... + w_m f_m$$

weights
Multiple linear regression

We can still calculate the squared error like before

\[h(f) = w_0 + w_1 f_1 + w_2 f_2 + \ldots + w_m f_m \]

\[\text{error}(h) = \sum_{i=1}^{n} (y_i - (w_0 + w_1 f_1 + w_2 f_2 + \ldots + w_m f_m))^2 \]

Still can solve this exactly!

Logistic function

\[\text{logistic} = \frac{1}{1 + e^{-x}} \]

Logistic regression

Find the best fit of the data based on a logistic

Basic steps for probabilistic modeling

Probabilistic models

Step 1: pick a model

Step 2: figure out how to estimate the probabilities for the model

Step 3 (optional): deal with overfitting

Which model do we use, i.e. how do we calculate \(p(\text{feature, label}) \)?

How do we train the model, i.e. how do we estimate the probabilities for the model?

How do we deal with overfitting?
Probabilistic models summarized

Two classification models:
- Naïve Bayes (models joint distribution)
- Logistic Regression (models conditional distribution)
 - In practice this tends to work better if all you want to do is classify

Priors/smoothing/regularization
- Important for both models
- In theory: allow us to impart some prior knowledge
- In practice: avoids overfitting and often tune on development data