

# Admin Assignment 5 Starter

#### Schedule

Midterm next week, due Friday (more on this in 1 min)

Assignment 6 due Friday before fall break

#### Midterm

Download from course web page when you're ready to take it (available by end of day Monday)

2 hours to complete

Must hand-in (or e-mail in) by 11:59 pm Friday Oct. 7

Can use: class notes, your notes, the book, your assignments and Wikipedia.

You may **not** use: your neighbor, anything else on the web, etc.

#### What can be covered

Anything we've talked about in class

Anything in the reading (these are not necessarily the same things)

Anything we've covered in the assignments

# Midterm topics

#### Machine learning basics

- different types of learning problems
- feature-based machine learning
- data assumptions/data generating distribution

#### Classification problem setup

#### Proper experimentation

- train/dev/test
- evaluation/accuracy/training error
- optimizing hyperparameters

# Midterm topics

# Learning algorithms Decision trees

- K-NN
- Perceptron
- Gradient descent

#### Algorithm properties

- ${\sf training/learning}$
- rational/why it works
- classifying
- hyperparameters
- avoiding overfitting
- algorithm variants/improvements

# Midterm topics

#### Geometric view of data

- distances between examples
- decision boundaries

#### Features

- example features
- removing erroneous features/picking good features
- challenges with high-dimensional data
- feature normalization

#### Other pre-processing

outlier detection

# Midterm topics

#### Comparing algorithms

- n-fold cross validation
- leave one out validation
- bootstrap resampling

#### imbalanced data

- evaluation
- precision/recall, F1, AUC
- subsampling
- oversampling
- weighted binary classifiers

# Midterm topics

#### Multiclass classification

- Modifying existing approaches
- Using binary classifier
- OVA
- AVA
- Tree-based
- micro- vs. macro-averaging

- using binary classifier
- using weighted binary classifier
- evaluation

# Midterm topics

#### Gradient descent

- 0/1 loss
- Surrogate loss functions
- Convexity
- minimization algorithm
- regularization
- different regularizers
- p-norms

#### Misc

- good coding habits
- JavaDoc

# Midterm general advice

#### 2 hours goes by fast!

- Don't plan on looking everything up Lookup equations, algorithms, random details
- Make sure you understand the key concepts
  Don't spend too much time on any one question
  Skip questions you're stuck on and come back to them
- Watch the time as you go

#### Be careful on the T/F questions

#### For written questions

- think before you write
- $\stackrel{\cdot}{\text{make your argument/analysis clear and concise}}$

# How many have you heard of?

(Ordinary) Least squares

Ridge regression

Lasso regression

Elastic regression

Logistic regression

# Model-based machine learning

pick a model

$$0 = b + \sum_{j=1}^{m} w_j f_j$$

pick a criteria to optimize (aka objective function)

$$\sum_{i=1}^{n} 1 \left[ y_i(w \cdot x_i + b) \le 0 \right]$$

3. develop a learning algorithm

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} 1 \big[ y_i(w \cdot x_i + b) \le 0 \big] \qquad \begin{array}{c} \text{Find w and b that} \\ \text{minimize the 0/1 loss} \end{array}$$

# Model-based machine learning

pick a model

$$0 = b + \sum_{j=1}^{m} w_j f_j$$

pick a criteria to optimize (aka objective function)

$$\sum_{i=1}^n \exp(-y_i(w\cdot x_i + b)) \qquad \begin{array}{c} \text{use a convex surrogate} \\ \text{loss function} \end{array}$$

develop a learning algorithm

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} \exp(-y_i(w \cdot x_i + b))$$
 Find w and b that minimize the

surrogate loss

# Surrogate loss functions

0/1 loss:

$$l(y,y') = 1 [yy' \le 0]$$

Hinge:

$$l(y, y') = \max(0, 1 - yy')$$

Exponential:

$$l(y, y') = \exp(-yy')$$

Squared loss:

$$l(y, y') = (y - y')^2$$

# Finding the minimum





You're blindfolded, but you can see out of the bottom of the blindfold to the ground right by your feet. I drop you off somewhere and tell you that you're in a convex shaped valley and escape is at the bottom/minimum. How do you get out?

## Gradient descent

- pick a starting point (w)
- □ repeat until loss doesn't decrease in any dimension:
- pick a dimension
- move a small amount in that dimension towards decreasing loss (using the derivative)

$$w_j = w_j - \eta \frac{d}{dw_j} loss(w)$$

# Perceptron learning algorithm!

repeat until convergence (or for some # of iterations): for each training example  $(f_1, f_2, ..., f_m, label)$ :

$$prediction = b + \sum_{j=1}^{m} w_j f_j$$

—if prediction \* label ≤ 0: // they don't agree—

for each w<sub>j</sub>:

 $w_i = w_i + f_i^* \text{label}$ b = b + label Note: for gradient descent, we always update

 $w_j = w_j + \eta y_i x_{ij} \exp(-y_i (w \cdot x_i + b))$ 

c

 $w_j = w_j + x_{ij}y_ic$  where  $c = \eta \exp(-y_i(w \cdot x_i + b))$ 







# Overfitting revisited: regularization

A regularizer is an additional criterion to the loss function to make sure that we don't overfit

It's called a regularizer since it tries to keep the parameters more normal/regular

It is a bias on the model that forces the learning to prefer certain types of weights over others

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} loss(yy') + \lambda \ regularizer(w,b)$$

# Regularizers

$$0 = b + \sum_{j=1}^{n} w_j f_j$$

Should we allow all possible weights?

Any preferences?

What makes for a "simpler" model for a linear model?

# Regularizers

$$0 = b + \sum_{j=1}^{n} w_j f_j$$

Generally, we don't want huge weights

If weights are large, a small change in a feature can result in a large change in the prediction

Also gives too much weight to any one feature

Might also prefer weights of 0 for features that aren't useful

# Regularizers

$$0 = b + \sum_{j=1}^{n} w_j f_j$$

How do we encourage small weights? or penalize large weights?

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} loss(yy') + \lambda \frac{regularizer(w,b)}{regularizer(w,b)}$$

# Common regularizers

sum of the weights

$$r(w,b) = \sum_{w_j} \left| w_j \right|$$

sum of the squared weights

$$r(w,b) = \sqrt{\sum_{w_j} \left| w_j \right|^2}$$

What's the difference between these?

# Common regularizers

sum of the weights

$$r(w,b) = \sum |w_j|$$

sum of the squared weights

$$r(w,b) = \sqrt{\sum_{w_i} \left| w_i \right|^2}$$

Squared weights penalizes large values more Sum of weights will penalize small values more









# Minimizing with a regularizer

We know how to solve convex minimization problems using gradient descent:

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} loss(yy')$$

If we can ensure that the loss + regularizer is convex then we could still use gradient descent:

$$\underset{w,b}{\operatorname{argmin}_{w,b}} \sum_{i=1}^{n} \underbrace{loss(yy') + \lambda regularizer(w)}_{\text{make convex}}$$

## Convexity revisited



One definition: The line segment between any two points on the function is above the function

Mathematically, f is convex if for all  $x_1, x_2$ :

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2) \quad \forall \ 0 < t < 1$$

the value of the function at some point between  $\mathbf{x}_1$  and  $\mathbf{x}_2$ 

the value at some point on the **line segment** between  $x_1$  and  $x_2$ 

# Adding convex functions

Claim: If f and g are convex functions then so is the function z=f+g

Prove:

$$z(tx_1 + (1-t)x_2) \le tz(x_1) + (1-t)z(x_2) \quad \forall \ 0 < t < 1$$

Mathematically, f is convex if for all  $x_1$ ,  $x_2$ :  $f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2) \quad \forall \ 0 < t < 1$ 

# Adding convex functions

By definition of the sum of two functions:

$$z(tx_1 + (1-t)x_2) = f(tx_1 + (1-t)x_2) + g(tx_1 + (1-t)x_2)$$

$$tz(x_1) + (1-t)z(x_2) = tf(x_1) + tg(x_1) + (1-t)f(x_2) + (1-t)g(x_2)$$
$$= tf(x_1) + (1-t)f(x_2) + tg(x_1) + (1-t)g(x_2)$$

Then, given that

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

$$g(tx_1 + (1-t)x_2) \le tg(x_1) + (1-t)g(x_2)$$

We know:

$$\begin{split} &f(tx_1 + (1-t)x_2) + g(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2) + tg(x_1) + (1-t)g(x_2) \\ &\text{So:} \quad z(tx_1 + (1-t)x_2) \leq tz(x_1) + (1-t)z(x_2) \end{split}$$

# Minimizing with a regularizer

We know how to solve convex minimization problems using gradient descent:

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} loss(yy')$$

If we can ensure that the loss + regularizer is convex then we could still use gradient descent:

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} loss(yy') + \lambda regularizer(w)$$

convex as long as both loss and regularizer are convex

#### p-norms are convex

$$r(w,b) = \sqrt[p]{\sum_{w_j} |w_j|^p} = ||w||^p$$

p-norms are convex for  $p \ge 1$ 

# Model-based machine learning

ı. pick a model

$$0 = b + \sum_{j=1}^{n} w_j f_j$$

2. pick a criteria to optimize (aka objective function)

$$\sum_{i=1}^{n} \exp(-y_i(w \cdot x_i + b)) + \frac{\lambda}{2} ||w||^2$$

3. develop a learning algorithm

$$\mathrm{argmin}_{w,b} \sum_{i=1}^{n} \exp(-y_i(w \cdot x_i + b)) + \frac{\lambda}{2} \left\| w \right\|^2 \qquad \begin{array}{c} \text{Find w and b} \\ \text{that minimize} \end{array}$$

#### Our optimization criterion

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} \exp(-y_{i}(w \cdot x_{i} + b)) + \frac{\lambda}{2} \|w\|^{2}$$

Loss function: penalizes examples where the prediction is different than the label

Regularizer: penalizes large weights

Key: this function is convex allowing us to use gradient descent

#### Gradient descent

- pick a starting point (w)
- repeat until loss doesn't decrease in any dimension:
  - pick a dimension
  - move a small amount in that dimension towards decreasing loss (using the derivative)

$$w_j = w_j - \eta \frac{d}{dw_j}(loss(w) + regularizer(w,b))$$

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} \exp(-y_i(w \cdot x_i + b)) + \frac{\lambda}{2} \|w\|^2$$

#### Some more maths

$$\frac{d}{dw_{j}}objective = \frac{d}{dw_{j}} \sum_{i=1}^{n} \exp(-y_{i}(w \cdot x_{i} + b)) + \frac{\lambda}{2} \|w\|^{2}$$

(some math happens)

$$= -\sum_{i=1}^{n} y_i x_{ij} \exp(-y_i (w \cdot x_i + b)) + \lambda w_j$$

## Gradient descent

- pick a starting point (w)
- repeat until loss doesn't decrease in any dimension:
- pick a dimension
- move a small amount in that dimension towards decreasing loss (using the derivative)

$$w_j = w_j - \eta \frac{d}{dw_j}(loss(w) + regularizer(w,b))$$

$$w_j = w_j + \eta \sum_{i=1}^n y_i x_{ij} \exp(-y_i (w \cdot x_i + b)) - \eta \lambda w_j$$

## The update

 $w_j = w_j + \eta y_i x_{ij} \exp(-y_i (w \cdot x_i + b)) - \eta \lambda w_j$ learning rate direction to update
constant: how far from wrong

What effect does the regularizer have?









# Regularization with p-norms

L1:

$$w_i = w_i + \eta(loss\_correction - \lambda sign(w_i))$$

L2:

$$w_i = w_i + \eta(loss\_correction - \lambda w_i)$$

Lp:

$$w_j = w_j + \eta(loss\_correction - \lambda cw_j^{p-1})$$

How do higher order norms affect the weights?

# Model-based machine learning

develop a learning algorithm

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} \exp(-y_{i}(w \cdot x_{i} + b)) + \frac{\lambda}{2} \left\| w \right\|^{2} \qquad \begin{array}{c} \text{Find w and} \\ \text{that minimiz} \end{array}$$

Is gradient descent the only way to find w and b?

No! Many other ways to find the minimum.

Some are don't even require iteration

Whole field called convex optimization

# Regularizers summarized

L1 is popular because it tends to result in sparse solutions (i.e. lots of zero weights)

However, it is not differentiable, so it only works for gradient descent solvers

L2 is also popular because for some loss functions, it can be solved directly (no gradient descent required, though often iterative solvers still)

Lp is less popular since they don't tend to shrink the weights enough

#### The other loss functions

Without regularization, the generic update is:

$$w_i = w_i + \eta y_i x_{ii} c$$

where

$$c = \exp(-y_i(w \cdot x_i + b))$$

exponential

$$c = 1[yy' < 1]$$

hinge loss

$$w_j = w_j + \eta(y_i - (w \cdot x_i + b)x_{ij})$$
 squared error

Many tools support these different combinations

Look at scikit learning package:

 $\underline{\text{http://scikit-learn.org/stable/modules/sgd.html}}$ 

#### Common names

(Ordinary) Least squares: squared loss

Ridge regression: squared loss with L2 regularization

Lasso regression: squared loss with L1 regularization

Elastic regression: squared loss with L1 AND L2 regularization  $\,$ 

Logistic regression: logistic loss