
11/3/15	

1	

ENCRYPTION TAKE 2:
PRACTICAL DETAILS
David Kauchak
CS52 – Spring 2015

Admin

Assignment 6

4 more assignments:
!  Assignment 7 (posted), due 11/13 5pm
!  Assignment 8, due 11/20 5pm
!  Assignments 9 & 10, due 12/9 11:59pm

Midterm reviews Tue & Wed 7-8pm

No office hours Thursday

Courses next spring Public key encryption

I like
bananas

encrypt m
essage

send encrypted message

de
cr

yp
t m

es
sa

ge

I like
bananas

11/3/15	

2	

RSA public key encryption

1.  Choose a bit-length k

2.  Choose two primes p and q which can be represented with at most k
bits

3.  Let n = pq and ϕ(n) = (p-1)(q-1)

4.  Find d such that 0 < d < n and gcd(d,ϕ(n)) = 1

5.  Find e such that de mod ϕ(n) = 1

6.  private key = (d,n) and public key = (e, n)

7.  encrypt(m) = me mod n decrypt(z) = zd mod n

Cracking RSA

1.  Choose a bit-length k

2.  Choose two primes p and q which can be represented with at most k bits

3.  Let n = pq and ϕ(n) = (p-1)(q-1)

4.  Find d such that 0 < d < n and gcd(d,ϕ(n)) = 1

5.  Find e such that de mod ϕ(n) = 1

6.  private key = (d,n) and public key = (e, n)

7.  encrypt(m) = me mod n decrypt(z) = zd mod n

Say I maliciously intercept an encrypted message.
How could I decrypt it? (Note, you can also assume that we have
the public key (e, n).)

Cracking RSA

encrypt(m) = me mod n

Idea 1: undo the mod operation , i.e. mod-1 function

If we knew me and e, we could figure out m

Do you think this is possible?

Cracking RSA

encrypt(m) = me mod n

Idea 1: undo the mod operation , i.e. mod-1 function

If we knew me and e, we could figure out m

 Generally, no, if we don’t know anything about the message.

The challenge is that the mod operator maps many, many
numbers to a single value.

11/3/15	

3	

Security of RSA

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

private key public key (d, n) (e, n)

Assuming you can’t break the encryption itself (i.e. you cannot
decrypt an encrypted message without the private key)

How else might you try and figure out the encrypted message?

Security of RSA

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

private key public key (d, n) (e, n)

Assuming you can’t break the encryption itself (i.e. you cannot
decrypt an encrypted message without the private key)

Idea 2: Try and figure out the private key!

How would you do this?

Security of RSA

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

private key public key (d, n) (e, n)

Already know e and n.

If we could figure out p and q, then we could figure out the
rest (i.e. d)!

Security of RSA

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

private key public key (d, n) (e, n)

How would you do figure out p and q?

11/3/15	

4	

Security of RSA

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

private key public key (d, n) (e, n)

For every prime p (2, 3, 5, 7 …):
-  If n divides p evenly then q = n / p

Why do we know that this must be p and q?

Security of RSA

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

private key public key (d, n) (e, n)

For every prime p (2, 3, 5, 7 …):
-  If n divides p evenly then q = n / p

Since p and q are both prime, there are no
other numbers that divide them evenly,
therefore no other numbers divide n evenly

Security of RSA

p: prime number
q: prime number
n = pq

ϕ(n) = (p-1)(q-1)
d: 0 < d < n and gcd(d,ϕ(n)) = 1
e: de mod ϕ(n) = 1

private key public key (d, n) (e, n)

For every number p (2, 3, 4, 5, 6, 7 …):
-  If n divides p evenly then q = n / p

Currently, there are no known “efficient” methods
for factoring a number into it’s primes.
This is the key to why RSA works!

Implementing RSA

1.  Choose a bit-length k

For generating the keys, this is the only input the algorithm has

11/3/15	

5	

Implementing RSA

2.  Choose two primes p and q which can be
represented with at most k bits

Ideas?

Finding primes

2.  Choose two primes p and q which can be
represented with at most k bits

Idea: pick a random number and see if it’s prime

How do we check if a number is prime?

Finding primes

2.  Choose two primes p and q which can be
represented with at most k bits

Idea: pick a random number and see if it’s prime

isPrime(num):
 for i = 1 … sqrt(num):
 if num % i == 0:
 return false
 return true

If the number is k bits, how many numbers (worst case) might we
need to examine?

Finding primes

2.  Choose two primes p and q which can be
represented with at most k bits

Idea: pick a random number and see if it’s prime

-  With k bits we can represent numbers up to 2k

-  We’re counting up to sqrt = (2k)1/2

-  Which is still 2k/2

-  For large k (e.g. 1024) this is a very big number!

11/3/15	

6	

Finding primes

Primality test for num:
-  pick a random number a
-  perform test(num, a)

-  if test fails, num is not prime
-  if test passes, 1/2 chance that num is prime

Does this help us?

Finding primes

Primality test for num:
-  pick a random number a
-  perform test(num, a)

-  if test fails: return false
-  if test passes: return true

If num is not prime, what are the chances that we
incorrectly say num is a prime?

Finding primes

Primality test for num:
-  pick a random number a
-  perform test(num, a)

-  if test fails: return false
-  if test passes: return true

0.5 (50%)

Can we do any better?

Finding primes

If num is not prime, what are the chances that we
incorrectly say num is a prime?

Primality test for num:
-  Repeat 2 times:

-  pick a random number a
-  perform test(num, a)

-  if test fails: return false

-  return true

11/3/15	

7	

Finding primes

Primality test for num:
-  pick a random number a
-  perform test(num, a)

-  if test fails: return false
-  if test passes: return true

p(0.25)
•  Half the time we catch it on the first test
•  Of the remaining half, again, half (i.e. a quarter

total) we catch it on the second test
•  ¼ we don’t catch it

Finding primes

If num is not prime, what are the chances that we
incorrectly say num is a prime?

Primality test for num:
-  Repeat 3 times:

-  pick a random number a
-  perform test(num, a)

-  if test fails: return false

-  return true

Finding primes

Primality test for num:
-  Repeat 3 times:

-  pick a random number a
-  perform test(num, a)

-  if test fails: return false

-  return true

p(1/8)

Finding primes

If num is not prime, what are the chances that we
incorrectly say num is a prime?

Primality test for num:
-  Repeat m times:

-  pick a random number a
-  perform test(num, a)

-  if test fails: return false

-  return true

11/3/15	

8	

Finding primes

Primality test for num:
-  Repeat m times:

-  pick a random number a
-  perform test(num, a)

-  if test fails: return false

-  return true

p(1/2m)

For example, m = 20: p(1/220) = p(1/1,000,000)

Finding primes

Primality test for num:
-  Repeat m times:

-  pick a random number a
-  perform test(num, a)

-  if test fails: return false

-  return true

Fermat’s little theorem: If p is a prime number, then for all
integers a:

a ap (mod p)

How does this help us?

Finding primes

Fermat’s little theorem: If p is a prime number, then for all
integers a:

a ap (mod p)

test(num,a):
-  generate a random number a < p
-  check if ap mod p = a

Implementing RSA

1.  Choose a bit-length k

2.  Choose two primes p and q which can be represented with at most k
bits

3.  Let n = pq and ϕ(n) = (p-1)(q-1)

How do we do this?

11/3/15	

9	

Implementing RSA

4.  Find d such that 0 < d < n and gcd(d,ϕ(n)) = 1

5.  Find e such that de mod ϕ(n) = 1

How do we do these steps?

Greatest Common Divisor

A useful property:

If two numbers are relatively prime (i.e. gcd(a,b) = 1),
then there exists a c such that

a*c mod b = 1

Greatest Common Divisor

A more useful property:

two numbers are relatively prime (i.e. gcd(a,b) = 1)
iff there exists a c such that a*c mod b = 1

What does iff mean?

Greatest Common Divisor

A more useful property:

1.  If two numbers are relatively prime (i.e. gcd(a,b) =

1), then there exists a c such that a*c mod b = 1

2.  If there exists a c such that a*c mod b = 1, then the
two numbers are relatively prime (i.e. gcd(a,b) = 1)

We’re going to leverage this second part

11/3/15	

10	

Implementing RSA

4.  Find d such that 0 < d < n and gcd(d,ϕ(n)) = 1

5.  Find e such that de mod ϕ(n) = 1

 If there exists a c such that a*c mod b = 1, then the
two numbers are relatively prime (i.e. gcd(a,b) = 1)

To find d and e:
-  pick a random d, 0 < d < n
-  try and find and e such that de mod ϕ(n) = 1

-  if none exists, try another d
-  if one exists, we’re done!

Known problem with known solutions

For the assignment, I’ve provided you with a function:
inversemod

inversemod Option type

Look at option.sml
http://www.cs.pomona.edu/~dkauchak/classes/
cs52/examples/option.sml

option type has two constructors:
-  NONE (representing no value)
-  SOME v (representing the value v)

11/3/15	

11	

case statement

case _______ of
 pattern1 => value
| pattern2 => value
| pattern3 => value
…

inversemod

Signing documents

en
cr

yp
t m

es
sa

ge

I like
bananas

If a message is encrypted with
the private key how can it be
decrypted?

Hint:
-  (me)d = med = m (mod n)
-  encrypt(m, (e, n)) = me mod n
-  decrypt(z, (d, n)) = zd mod n

Signing documents

-  (me)d = med = m (mod n)
-  encrypt(m, (e, n)) = me mod n
-  decrypt(z, (d, n)) = zd mod n

encrypt(m, (d,n)) = md mod n

decrypt(md mod n , (e, n)) = (md)e mod n

= mde mod n

= med mod n

= m (if m < n)

11/3/15	

12	

Signing documents

en
cr

yp
t m

es
sa

ge

I like
bananas

What does this do for us?

Signing documents

en
cr

yp
t m

es
sa

ge

I like
bananas

If the message can be
decrypted with the public key
then the sender must have had
the private key

This is a way to digitally sign a
document!

Signing documents

I like
bananas

decrypt m
essage

send signed message

en
cr

yp
t m

es
sa

ge

I like
bananas

Confirmed: batman likes bananas

Signing documents

I like
bananas

decrypt m
essage

send signed message

en
cr

yp
t m

es
sa

ge

I like
bananas

Confirmed: batman likes bananas

11/3/15	

13	

Public key encryption

Share your public key with everyone

How does this happen?

Anything we have to be careful of?

What next…

More implementation details
!  characters to integers
!  splitting up the numbers
!  finding prime numbers
!  helper functions
!  option type

Key distribution

“signing” documents

