

Admin

Assignment 6

4 more assignments:

- Assignment 7 (posted), due 11/13 5pm
- Assignment 8, due 11/20 5pm
- Assignments 9 & 10, due 12/9 11:59pm

Midterm reviews Tue & Wed 7-8pm

No office hours Thursday

RSA public key encryption

- 1. Choose a bit-length k
- Choose two primes p and q which can be represented with at most k bits
- 3. Let n = pq and $\varphi(n) = (p-1)(q-1)$
- 4. Find d such that $0 \le d \le n$ and $gcd(d, \varphi(n)) = 1$
- 5. Find e such that de mod $\varphi(n) = 1$
- 6. private key = (d,n) and public key = (e, n)
- 7. $encrypt(m) \equiv m^e \mod n \quad decrypt(z) \equiv z^d \mod n$

Cracking RSA

- 1. Choose a bit-length k
- 2. Choose two primes p and q which can be represented with at most k bits
- Let n = pq and $\varphi(n) = (p-1)(q-1)$
- 4. Find d such that $0 \le d \le n$ and $gcd(d, \varphi(n)) = 1$
- s. Find e such that de mod $\varphi(n) = 1$
- 6. private key = (d,n) and public key = (e, n)
- $7. \qquad encrypt(m) \equiv m^e \ mod \ n \quad decrypt(z) \equiv z^d \ mod \ n$

Say I maliciously intercept an encrypted message. How could I decrypt it? (Note, you can also assume that we have the public key (e, n).)

Cracking RSA

encrypt(m) = m^e mod n

Idea 1: undo the mod operation , i.e. mod^{-1} function

If we knew $m^{\rm e}$ and e, we could figure out m

Do you think this is possible?

Cracking RSA

 $encrypt(m) = m^e \mod n$

Idea 1: undo the mod operation , i.e. mod^{-1} function

If we knew m^e and e, we could figure out m

Generally, no, if we don't know anything about the message.

The challenge is that the mod operator maps many, many numbers to a single value.

Security of R	SA
p: prime number q: prime number n = pq	$\varphi(n) = (p-1)(q-1)$ d: 0 < d < n and gcd(d, $\varphi(n)$) = 1 e: de mod $\varphi(n) = 1$
private key (d, n)	public key (e, n)
decrypt an encrypted me	k the encryption itself (i.e. you cannot essage without the private key) and figure out the encrypted message?
now else might you if y d	na ngure our me encryprea messagev

Security of R	SA
• •	$\varphi(n) = (p-1)(q-1)$ d: 0 < d < n and gcd(d, $\varphi(n)$) = 1 e: de mod $\varphi(n) = 1$
private key (d, n)	public key (e, n)
• /	the encryption itself (i.e. you cannot essage without the private key)
Idea 2: Try and figure ou	t the private key!
How would you do this?	

p: prime number q: prime number	$\begin{aligned} \varphi(n) &= (p-1)(q-1) \\ d: 0 < d < n \text{ and } gcd(d,\varphi(n)) = 1 \end{aligned}$
q: prime number n = pq	e: de mod $\varphi(n) = 1$
private key (d, n)	public key (e, n)
Already know e and n.	
Aiready know e and n.	

Security of R	SA
q: prime number	$\varphi(n) = (p-1)(q-1)$ d: 0 < d < n and gcd(d, $\varphi(n)$) = 1 e: de mod $\varphi(n) = 1$
private key (d, n)	public key (e, n)
How would you do figure	e out p and q?

Security of R	SA
p: prime number q: prime number n = pq	$\varphi(n) = (p-1)(q-1)$ d: 0 < d < n and gcd(d, $\varphi(n)$) = 1 e: de mod $\varphi(n) = 1$
private key (d, n)	public key (e, n)
For every prime p (2, 3, - If n divides p evenly t Why do v	

Security of R	SA
p: prime number q: prime number n = pq	$\varphi(n) = (p-1)(q-1)$ d: 0 < d < n and gcd(d, $\varphi(n)$) = 1 e: de mod $\varphi(n) = 1$
private key (d, n)	public key (e, n)
For every number p (2, 3 - If n divides p evenly t	
Currently, there are for factoring a numb This is the key to w	· · · · ·

For generating the keys, this is the only input the algorithm has

Implementing RSA

2. Choose two primes p and q which can be represented with at most k bits

Ideas?

Finding primes

 Choose two primes p and q which can be represented with at most k bits

Idea: pick a random number and see if it's prime

How do we check if a number is prime?

Finding primes

 Choose two primes p and q which can be represented with at most k bits

Idea: pick a random number and see if it's prime

isPrime(num): for i = 1 ... sqrt(num): if num % i == 0: return false return true

If the number is k bits, how many numbers (worst case) might we

need to examine?

Finding primes

 Choose two primes p and q which can be represented with at most k bits

Idea: pick a random number and see if it's prime

- With k bits we can represent numbers up to $2^k\,$
- We're counting up to sqrt = $(2^k)^{1/2}$
- Which is still $2^{k/2}$
- For large k (e.g. 1024) this is a very big number!

Finding primes

Primality test for *num*:

- pick a random number a
- perform test(<mark>num</mark>, a)
- if test fails, *num* is not prime
- if test passes, 1/2 chance that *num* is prime

Does this help us?

Finding primes

Primality test for num:

- pick a random number a
- perform test(num, α)
- if test fails: return false
- if test passes: return true

If num is not prime, what are the chances that we incorrectly say num is a prime?

Finding primes

Primality test for *num*:

- pick a random number a
- perform test(num, a)
- if test fails: return false
 - if test passes: return true

0.5 (50%)

Can we do any better?

Finding primes

- Primality test for num:
- Repeat 2 times:
 - pick a random number a
 perform test(num, a)
 - if test fails: return false
- return true

If num is not prime, what are the chances that we incorrectly say num is a prime?

Finding primes

Primality test for *num*:

- pick a random number a
- perform test(num, a)
- if test fails: return false
- if test passes: return true

p(0.25)

- Half the time we catch it on the first test
- Of the remaining half, again, half (i.e. a quarter
- total) we catch it on the second test
- $\frac{1}{4}$ we don't catch it

Finding primes

Primality test for *num*:

- Repeat 3 times:
- pick a random number a
- perform test(num, a)
- if test fails: return false
- return true

If num is not prime, what are the chances that we incorrectly say num is a prime?

Finding primes

Primality test for *num*:

- Repeat 3 times:
- pick a random number a
- perform test(num, a)
- if test fails: return false
- return true

p(1/8)

Finding primes

- Primality test for num:
- Repeat m times:
 - pick a random number a
 perform test(num, a)
 - if test fails: return false
- return true

If num is not prime, what are the chances that we incorrectly say num is a prime?

Finding primes

Primality test for *num*:

Repeat m times:

- pick a random number a
- perform test(num, a)
 if test fails: return false
- return true

$p(1/2^{m})$

For example, m = 20: $p(1/2^{20}) = p(1/1,000,000)$

Finding primes

Fermat's little theorem: If p is a prime number, then for all integers a:

$\mathsf{a} \equiv \mathsf{a}^\mathsf{p} \; (mod \; \mathsf{p})$

test(num,a):

- generate a random number a < p
- check if $a^p \mod p = a$

Implementing RSA

- 1. Choose a bit-length k
- 2. Choose two primes ρ and q which can be represented with at most k bits
- 3. Let n = pq and $\varphi(n) = (p-1)(q-1)$

How do we do this?

Implementing RSA

- 4. Find d such that $0 \le d \le n$ and $gcd(d, \varphi(n)) = 1$
- 5. Find e such that de mod $\varphi(n) = 1$

How do we do these steps?

Greatest Common Divisor

A useful property:

If two numbers are relatively prime (i.e. gcd(a,b) = 1), then there exists a c such that

 $a^*c \mod b = 1$

Greatest Common Divisor

A more useful property:

two numbers are relatively prime (i.e. gcd(a,b) = 1) iff there exists a c such that $a^*c \mod b = 1$

What does iff mean?

Greatest Common Divisor

A more useful property:

- If two numbers are relatively prime (i.e. gcd(a,b) =

 then there exists a c such that a*c mod b = 1
- If there exists a c such that a*c mod b = 1, then the two numbers are relatively prime (i.e. gcd(a,b) = 1)

We're going to leverage this second part

inversemod

(* * inversemod : cs52int -> cs52int -> cs52int option

Option type

Look at option.sml

http://www.cs.pomona.edu/~dkauchak/classes/ cs52/examples/option.sml

option type has two constructors:

- NONE (representing no value)
- SOME v (representing the value v)

case statement

case _____ of

pattern1 => value | pattern2 => value | pattern3 => value

•••

inversemod

- * inversemod : cs52int -> cs52int -> cs52int option
- * inversemed u m returns (SOME v) when 0 < v < |m| and uv = 1 * (mod m). The value of v, if it exists, is unique. inversemed u m * returns NOME if there is no such v.
- *) fun inversemod u m =

Signing documents If a message is encrypted with l like banan the private key how can it be decrypted? Hint: - (m^e)^d = m^{ed} = m (mod n) - encrypt(m, (e, n)) = m^e mod n - decrypt(z, (d, n)) = z^d mod n

Signing documents

- $(m^e)^d = m^{ed} = m \pmod{n}$
- encrypt(m, (e, n)) = m^e mod n
- decrypt(z, (d, n)) = $z^d \mod n$

 $encrypt(m, (d,n)) = m^d \mod n$

decrypt($m^d \mod n$, (e, n)) = $(m^d)^e \mod n$

 $= m^{de} \mod n$

 $= m^{ed} \mod n$

= m (if m ≤ n)

