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ENCRYPTION TAKE 2: 
PRACTICAL DETAILS 
David Kauchak 
CS52 – Spring 2015 

Admin 

Assignment 6 
 

4 more assignments: 
!  Assignment 7 (posted), due 11/13 5pm 
!  Assignment 8, due 11/20 5pm 
!  Assignments 9 & 10, due 12/9 11:59pm 

Midterm reviews Tue & Wed 7-8pm 
 
No office hours Thursday 
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RSA public key encryption 

1.  Choose a bit-length k 
 

2.   Choose two primes p and q which can be represented with at most k 
bits 

3.  Let n = pq and ϕ(n) = (p-1)(q-1) 
 

4.  Find d such that 0 < d < n and gcd(d,ϕ(n)) = 1 

5.  Find e such that de mod ϕ(n) = 1 

6.  private key = (d,n) and public key = (e, n) 

7.  encrypt(m) = me mod n   decrypt(z) = zd mod n 

Cracking RSA 

1.  Choose a bit-length k 
 

2.   Choose two primes p and q which can be represented with at most k bits 

3.  Let n = pq and ϕ(n) = (p-1)(q-1) 
 

4.  Find d such that 0 < d < n and gcd(d,ϕ(n)) = 1 

5.  Find e such that de mod ϕ(n) = 1 

6.  private key = (d,n) and public key = (e, n) 

7.  encrypt(m) = me mod n   decrypt(z) = zd mod n 

Say I maliciously intercept an encrypted message. 
How could I decrypt it? (Note, you can also assume that we have 
the public key (e, n).) 

Cracking RSA 

encrypt(m) = me mod n 
 
Idea 1: undo the mod operation , i.e. mod-1 function 
 
If we knew me and e, we could figure out m 
 
 
Do you think this is possible? 

Cracking RSA 

encrypt(m) = me mod n 
 
Idea 1: undo the mod operation , i.e. mod-1 function 
 
If we knew me and e, we could figure out m 
 
 Generally, no, if we don’t know anything about the message. 
 
The challenge is that the mod operator maps many, many 
numbers to a single value. 
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Security of RSA 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

private key public key (d, n) (e, n) 

Assuming you can’t break the encryption itself (i.e. you cannot 
decrypt an encrypted message without the private key) 
 
How else might you try and figure out the encrypted message?  

Security of RSA 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

private key public key (d, n) (e, n) 

Assuming you can’t break the encryption itself (i.e. you cannot 
decrypt an encrypted message without the private key) 
 
Idea 2: Try and figure out the private key! 
 
How would you do this? 

Security of RSA 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

private key public key (d, n) (e, n) 

Already know e and n. 
 
If we could figure out p and q, then we could figure out the 
rest (i.e. d)! 

Security of RSA 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

private key public key (d, n) (e, n) 

How would you do figure out p and q? 
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Security of RSA 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

private key public key (d, n) (e, n) 

For every prime p (2, 3, 5, 7 …): 
-  If n divides p evenly then q = n / p  

Why do we know that this must be p and q? 

Security of RSA 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

private key public key (d, n) (e, n) 

For every prime p (2, 3, 5, 7 …): 
-  If n divides p evenly then q = n / p  

Since p and q are both prime, there are no 
other numbers that divide them evenly, 
therefore no other numbers divide n evenly 

Security of RSA 

p: prime number 
q: prime number 
n  = pq 

ϕ(n) = (p-1)(q-1) 
d:   0 < d < n and gcd(d,ϕ(n)) = 1 
e:   de mod ϕ(n) = 1 

private key public key (d, n) (e, n) 

For every number p (2, 3, 4, 5, 6, 7 …): 
-  If n divides p evenly then q = n / p  

Currently, there are no known “efficient” methods 
for factoring a number into it’s primes. 
This is the key to why RSA works!  

Implementing RSA 

1.  Choose a bit-length k 

For generating the keys, this is the only input the algorithm has 
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Implementing RSA 
 

2.  Choose two primes p and q which can be 
represented with at most k bits 

Ideas? 

Finding primes 
 

2.  Choose two primes p and q which can be 
represented with at most k bits 

Idea: pick a random number and see if it’s prime 

How do we check if a number is prime? 

Finding primes 
 

2.  Choose two primes p and q which can be 
represented with at most k bits 

Idea: pick a random number and see if it’s prime 

isPrime(num): 
     for i = 1 … sqrt(num): 
          if num % i == 0: 
              return false 
    return true 

If the number is k bits, how many numbers (worst case) might we 
need to examine? 

Finding primes 
 

2.  Choose two primes p and q which can be 
represented with at most k bits 

Idea: pick a random number and see if it’s prime 

-  With k bits we can represent numbers up to 2k 

-  We’re counting up to sqrt = (2k)1/2 

-  Which is still 2k/2 

-  For large k (e.g. 1024) this is a very big number! 
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Finding primes 

Primality test for num: 
-  pick a random number a 
-  perform test(num, a) 

-  if test fails, num is not prime 
-  if test passes, 1/2 chance that num is prime 

Does this help us? 

Finding primes 

Primality test for num: 
-  pick a random number a 
-  perform test(num, a) 

-  if test fails: return false 
-  if test passes: return true 

If num is not prime, what are the chances that we 
incorrectly say num is a prime? 

Finding primes 

Primality test for num: 
-  pick a random number a 
-  perform test(num, a) 

-  if test fails: return false 
-  if test passes: return true 

0.5 (50%) 

Can we do any better? 

Finding primes 

If num is not prime, what are the chances that we 
incorrectly say num is a prime? 

Primality test for num: 
-  Repeat 2 times: 

-  pick a random number a 
-  perform test(num, a) 

-  if test fails: return false 

-  return true 
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Finding primes 

Primality test for num: 
-  pick a random number a 
-  perform test(num, a) 

-  if test fails: return false 
-  if test passes: return true 

p(0.25) 
•  Half the time we catch it on the first test 
•  Of the remaining half, again, half (i.e. a quarter 

total) we catch it on the second test 
•  ¼ we don’t catch it 

Finding primes 

If num is not prime, what are the chances that we 
incorrectly say num is a prime? 

Primality test for num: 
-  Repeat 3 times: 

-  pick a random number a 
-  perform test(num, a) 

-  if test fails: return false 

-  return true 

Finding primes 

Primality test for num: 
-  Repeat 3 times: 

-  pick a random number a 
-  perform test(num, a) 

-  if test fails: return false 

-  return true 

p(1/8) 

Finding primes 

If num is not prime, what are the chances that we 
incorrectly say num is a prime? 

Primality test for num: 
-  Repeat m times: 

-  pick a random number a 
-  perform test(num, a) 

-  if test fails: return false 

-  return true 
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Finding primes 

Primality test for num: 
-  Repeat m times: 

-  pick a random number a 
-  perform test(num, a) 

-  if test fails: return false 

-  return true 

p(1/2m) 
 
For example, m = 20: p(1/220) = p(1/1,000,000)  

Finding primes 

Primality test for num: 
-  Repeat m times: 

-  pick a random number a 
-  perform test(num, a) 

-  if test fails: return false 

-  return true 

Fermat’s little theorem: If p is a prime number, then for all 
integers a: 
 
a     ap (mod p)  

How does this help us? 

Finding primes 

Fermat’s little theorem: If p is a prime number, then for all 
integers a: 
 
a     ap (mod p)  

test(num,a): 
-  generate a random number a < p 
-  check if ap mod p = a 

Implementing RSA 

1.  Choose a bit-length k 
 

2.   Choose two primes p and q which can be represented with at most k 
bits 

3.  Let n = pq and ϕ(n) = (p-1)(q-1) 
 

How do we do this? 
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Implementing RSA 
 

4.  Find d such that 0 < d < n and gcd(d,ϕ(n)) = 1 

5.  Find e such that de mod ϕ(n) = 1 

 
How do we do these steps? 

Greatest Common Divisor 

A useful property: 
 
If two numbers are relatively prime (i.e. gcd(a,b) = 1), 
then there exists a c such that 
 
 
 

a*c mod b = 1   

Greatest Common Divisor 

A more useful property: 
 
two numbers are relatively prime (i.e. gcd(a,b) = 1) 
iff there exists a c such that a*c mod b = 1   
 

What does iff mean? 

Greatest Common Divisor 

A more useful property: 
 
1.  If two numbers are relatively prime (i.e. gcd(a,b) = 

1), then there exists a c such that a*c mod b = 1   

2.  If there exists a c such that a*c mod b = 1, then the 
two numbers are relatively prime (i.e. gcd(a,b) = 1) 

We’re going to leverage this second part 
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Implementing RSA 
 

4.  Find d such that 0 < d < n and gcd(d,ϕ(n)) = 1 

5.  Find e such that de mod ϕ(n) = 1 

 If there exists a c such that a*c mod b = 1, then the 
two numbers are relatively prime (i.e. gcd(a,b) = 1) 

To find d and e: 
-  pick a random d, 0 < d < n 
-  try and find and e such that de mod ϕ(n) = 1 

-  if none exists, try another d 
-  if one exists, we’re done! 

Known problem with known solutions 
 
For the assignment, I’ve provided you with a function: 
inversemod 

inversemod Option type 

Look at option.sml 
http://www.cs.pomona.edu/~dkauchak/classes/
cs52/examples/option.sml 
 
option type has two constructors: 
-  NONE     (representing no value) 
-  SOME v   (representing the value v) 
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case statement 

case _______ of 
   pattern1 => value 
| pattern2 => value 
| pattern3 => value 
… 
 

inversemod 

Signing documents 
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If a message is encrypted with 
the private key how can it be 
decrypted? 

Hint:  
-  (me)d = med = m (mod n) 
-  encrypt(m, (e, n)) = me mod n 
-  decrypt(z, (d, n)) = zd mod n 

Signing documents 

-  (me)d = med = m (mod n) 
-  encrypt(m, (e, n)) = me mod n 
-  decrypt(z, (d, n)) = zd mod n 

encrypt(m, (d,n)) = md mod n 

decrypt( md mod n , (e, n)) =  (md)e mod n 

= mde mod n 

= med mod n 

= m (if m < n) 
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Signing documents 
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What does this do for us? 

Signing documents 
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If the message can be 
decrypted with the public key 
then the sender must have had 
the private key 
 
This is a way to digitally sign a 
document! 

Signing documents 
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Confirmed: batman likes bananas 

Signing documents 
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Confirmed: batman likes bananas 
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Public key encryption 

Share your public key with everyone 

How does this happen? 
 
Anything we have to be careful of? 

What next… 

More implementation details 
!  characters to integers 
!  splitting up the numbers 
!  finding prime numbers 
!  helper functions 
!  option type 
 
Key distribution 
 
“signing” documents 


