
Computer Science 52

Models of Computation

Spring Semester, 2015

Computer scientists use mathematical models to study the nature of computation.
In these notes, we look at two sorts of models, finite automata and Turing machines.

1 Deterministic finite automata

Consider a finite alphabet, A. In examples, we often use an alphabet with only two
symbols, like a and b or 0 and 1. In “real life,” the alphabet is the full alphabet or a
computer system’s character set. A deterministic finite automaton, abbreviated DFA,
consists of

� a finite set Q of states, one of which is designated as the start state q0;

� a subset F of Q of final states; and

� a transition function � : Q�A! Q.

The idea is that our automaton processes a string of alphabet symbols, one at a
time. It begins in the start state, and each time it processes a character, it moves
to a (possibly different) state as determined by the transition function. The “deter-
ministic” part is that the new state is determined solely by the current state and the
symbol.

A string is accepted if, after processing the string, the machine is in a state in F .
Otherwise, the string is rejected. The language accepted by the DFA is the set of all
accepted strings.

LetA� be the set of all strings composed of letters from the alphabetA. It includes
the empty string, denoted �. We can define a function from states and strings into
states using recursion; it is easy to imagine transforming this definition into an SML
function. Consider a string to be empty or to consist of a first character c and a
“rest of string” s.

���q; �� � q

���q; c s� � �����q; c�; s�

1



b

a

a
a

b

b

b

a

q0

q1

q3

q2

Figure 1: A DFA over the two-letter alphabet accepting strings that begin and end
with a. The start state is q0; the only final state is q1.

Then the language accepted by the DFA with transition function � is�
t 2A� j ���q0; t� 2 F

	
:

The diagram in Figure 1 shows a DFA which accepts the language of strings that
start and end with a.

2 Nondeterministic automata

A nondeterministic finite automaton, abbreviated NFA, is one that may make “guesses”
as it processes characters. More precisely, its transition function gives not a single
new state but a set of possibilities. Let P�Q� be the set of subsets ofQ, and consider
a transition function of the form

� : Q�A! P�A�.

If the automaton is in state q and encounters a symbol c, then ��q; c� is the set of
possible next states. One can think of the new state as being chosen randomly from
the set. The set may have just one element, in which case there is no choice; or
the set may even be empty, in which case there is no new state and the automaton
freezes up. We can define a function that gives us the set of possible states of the
automaton after processing a string. It is a function that takes a set of states and a
string and produces a set of states.

���R; �� � R

���R; c s� �
S
q2R �����q; c�; s�

An NFA accepts the string t if ���fq0g; t� contains an element of F . A string is
accepted if there is one sequence of guesses that results in a final state. It is rejected
if there is no way to get into a final state after processing the string.

2



a

b bb

b

q1 q2 q3q0

Figure 2: An NFA over the two-letter alphabet accepting strings that end with bbb.
A DFA accepting the same language would have more states or more transitions.

Nondeterministic automata are useful because they are often simpler and more com-
pact. The NFA in Figure 2 accepts the language of all strings that end with bbb.

It is possible to transform a nondeterministic automaton into a deterministic one
that accepts the same states. Given an NFA, construct a DFA whose states are sets
of the NFA’s states, and define a transition function similar to the one above.

3 Regular and non-regular languages

A language (that is, a set of strings over some alphabet) is regular if it is accepted
by some finite automaton. We have seen that a language accepted by an NFA is also
accepted by a DFA, so we can say that a language is regular if it is accepted by a
DFA.

Are there languages that are not regular? Yes. A common example is the language of
balanced parentheses. The string ���������� is in that language, while ��� is not. Most
programming languages are not regular because they insist, among other things,
that parentheses be balanced. Another example of a non-regular language is given
in one of the assignments.

To see how one might determine that a language is not regular, suppose that we
have a language and a DFA that accepts it. Consider how the DFA processes strings.
If two strings, t and u, end up in the same state and we append the same suffix x to
each of them, then the new strings tx and ux are also in the same state. We know
that the two strings t and u are in different states if we can find a suffix x such that
one of tx and ux is accepted and the other is rejected. When this occurs, we say
that we can “distinguish” between t and u.

Notice that “distinguishing” depends only on the language being accepted and is
independent of the DFA. Given a language L, we say that a pair of strings t and u

3



is distinguishable if there is another string x such that tx is in L and ux is not, or
vice versa. We have the following theorem.

Regular Language Theorem. A language L is regular if and only if there is no infinite
set of pairwise distinguishable strings.

Here is a sketch of one direction of the proof: If a language is regular, it is accepted
by some DFA with n states. Suppose that we have a set of strings with more than n
elements. Each string is processed by the DFA into some state, and since there are
more strings than states, two strings must end up in the same state. (This is an appli-
cation of the famous Pigeon Hole Principle.) Those two strings are indistinguishable.
Therefore, any pairwise indistinguishable set can have at most n elements and must
be finite.

The proof of the converse requires equivalence relations, which will be discussed in
class.

We can see now why the language of balanced parentheses is not regular. Let pj
be the string consisting of exactly j left parentheses. If j 6� k, then pj and pk are
distinguishable because, when r is the string of j right parentheses, pjr is in the
language and pkr is not. The set of all pj ’s is an infinite pairwise distinguishable
set.

4 Turing Machines

These will be discussed in class; here is a quick summary. A Turing machine consists
of the following components:

� a finite input alphabetA;

� a finite tape alphabet T which contains all the symbols in A plus a blank
symbol ;

� a finite set of states Q with three especially-designated states, a start state q0,
an accepting state qA, and a rejecting state qR;

� a tape, divided into cells each holding exactly one character;

� a head that scans one cell of the tape; and

� a finite set of possible transitions of the form �a; q ; b;D; r�.

The tape is potentially infinite in both directions. By “potentially” we mean that we
only use finitely much of it at any given time, but we can always extend the tape
in either direction when we need to. All tape cells, except the ones that have been
explicitly changed, contain the blank symbol . When the machine begins, it is in

4



the start state, there is a string of symbols from the input alphabet on the tape, and
the tape head is scanning the leftmost symbol of the input string.

A transition specifies one step in the computation. The transition �a; q ; b;D; r�
applies when the tape head is scanning a character a and the machine is in state q.
The action of the transition is to replace the character by b (which may be the same
as a), to move the head as specified by D, and to enter state r . The machine is then
ready for the next step in the computation. The head movement D is either L, R, or
S, standing for move left one square, move right one square, or stay put.

A string is accepted if the Turing machine enters its accepting state at some point
along the computation. A string is rejected if it is not accepted. For simplicity, it
is best to have the machine enter the explicit rejecting state whenever possible, but
this requirement cannot always be enforced. There may be situations in which no
transition is applicable; the machine freezes and implicitly rejects its input in those
cases.

Turing machines can be non-deterministic. That is, there may be situations in which
two or more transitions are applicable. You can think of the Turing machine as mak-
ing a random choice of which transition to apply in those cases. A string is accepted
if some legal sequence of steps leads to an accepting state. Perhaps surprisingly,
the class of languages accepted by non-deterministic Turing machines is the same
as the class of languages accepted by deterministic ones.

Turing machines are thought to be “universal” in the sense that any computable
process can be carried out on a Turing machine. It would not be difficult to write
in your favorite programming language a program that simulates a Turing machine.
It is equally possible, but tedious, to design a Turing machine that simulates an
ordinary computer program. Turing machines are valuable because they capture
the nature of computation in a simple model and can therefore be used to study the
limits of computation.

5 The Church-Turing Thesis

The value of a Turing machine is not that we actually carry out computations on
them, but that we use them to study computation. In this course you will design
a few Turing machines to do simple computational tasks. If you had more time
(as perhaps you will in a later course), you will create Turing machines with more
complicated behavior. You might, for example, build a Turing machine that executed
SML programs.

After some experience with Turing machines, people often come to a conclusion:

Any computable process can be carried out on a Turing machine.

5



This assertion is known as the Church-Turing Thesis, or more simply, Church’s The-
sis. It is named for the mathematicians Alonzo Church and Alan Turing, both pio-
neers in the theory of computation.

The Church-Turing Thesis is a statement of confidence. It cannot ever be proved,
because we do not have a clear definition of “computable process.” One might, in
principle at least, discover a process that everyone agrees is computable but cannot
be carried out on a Turing machine. It is highly unlikely that anyone will do that, and
the Church-Turing Thesis is usually taken as the definition of a computable process.

6 Self-reproducing Programs

To see an unusual example of a computable process, we take a short digression into
self-reproducing programs. We seek a program that takes no input and produces its
own code as its output. Here is an example in SML.

val q="\"";

val s=";";

(fn x => x^q^x^q^s)"(fn x => x^q^x^q^s)";

This program is unsatisfying because the declarations of the values q and s are
“outside” the program. We can put it inside by complicating the function a bit. The
code below generates a self-reproducing expression in SML. We use ASCII values for
the characters to avoid having to quote the quotation mark.

val q=str(chr 34);

val s=str(chr 59);

(fn x => x^q^x^q^s)

"val q=str(chr 34);val s=str(chr 59);(fn x => x^q^x^q^s)";

This program is still not quite self-reproducing, because the code above contains
line breaks and spaces that do not appear in the output. But the output is exactly a
self-reproducing program!

Figure 3 shows an example of a self-reproducing program in Java. It comes from
www.nyx.net/~gthompso/self_java.txt where it is attributed to Bertram Felgen-
hauer. A cursory web search will uncover literally hundreds of self-reproducing
programs in all possible programming languages.

Running either of these programs is a computational process. Therefore, if we ac-
cept the Church-Turing Thesis, there must be a Turing machine that does the same
thing. By “the same thing,” we might mean the trivial act of printing the above SML
code or Java code, but in fact one can design a Turing machine that will print its
own description. Try it before reading further!

6

www.nyx.net/~gthompso/self_java.txt


class S{

public static void main(String[]a){

String s="class S{public static void main(String[]a){

String s=;char c=34;

System.out.println(s.substring(0,52)+

c+s+c+s.substring(52));}}";

char c=34;

System.out.println(s.substring(0,52)+c+s+c+s.substring(52));

}

}

Figure 3: A self-reproducing program in Java.

If we accept the Church-Turing Thesis, then we have an appealing shortcut to de-
signing Turing machines. We can informally describe a computational process and
then use the Church-Turing Thesis to assert that a corresponding Turing machine
must exist. It is only a shortcut, however. If we were pressed, we would have to
verify an instance of the thesis by specifying the Turing machine down to the last
transition. It is usually not a difficult task, but it is tedious and distracting. For our
purposes now, we will rely on the Church-Turing Thesis and be satisfied with the
higher-level descriptions.

7 Universal Turing Machines

If someone gives you a description of a Turing machine and an input string appro-
priate for that machine, you can step through the computation. With pencil and
paper, you can keep track of the contents of the tape, the position of the head, and
the state of the machine. It is a simple mechanical—or computational—process to
move from one configuration to the next.

What we have just demonstrated is that simulating the behavior of a Turing machine
is itself a computational process. By the Church-Turing thesis, therefore, there must
be a Turing machine that simulates other Turing machines.

More precisely, there is a Turing machine U , called a universal Turing machine.
Suppose that hMi is the description of a Turing machine M (suitably translated into
the input alphabet of U ) and w is an input string for M . When presented with the
input hMi;w�, U does the same thing (accepts, rejects explicitly, or runs forever) as
M does on input w. We have a programmable computer!

The idea that a program, hMi in this case, is just another form of data was a cru-
cial observation in the development of computers. The mathematician John von

7



Neumann is usually credited with that insight.

The indistinguishability of program and data leads to interesting cases of self-refe-
ence. One such example is the self-reproducing computer. Let Cw be the Turing
machine that ignores its input, prints w on the tape, and then halts. Creating Cw
from w is a computational process, so there is a Turing machine D that on input w
prints a description of Cw . Now let E be the Turing machine that behaves as follows.

On input w, E first makes a second copy of w. It simulates D on one
copy to obtain Cw . It then treats the second copy of w as a Turing
machine description and “composes” it with Cw : first Cw , then w. The
Turing machine E prints a description of the composite machine and
then halts.

Notice that E halts on all inputs, because it is only manipulating the descriptions of
Turing machines.

Let e be a description of E, and let s be the Turing machine description produced
by running E with input e. Let S be the Turing machine described by s. What does
S do? It runs Ce and writes e on the tape. It passes that input to E, which in turn
produces s. Therefore, S writes its own description.

8 The Halting Problem

Here is a problem that programmers confront frequently: Given a program and an
input, does the program with the given input halt? It is a question that can be asked
in our ordinary language about computation. And it can often have an easy answer.
All of us have found, and corrected, infinite loops in our code. But is there a general
algorithm that will always answer the question?

Simulating the program on the input will give us only one possible answer. If the
simulation halts, then we can say “Yes, the program halts.” But if the simulation
does not halt, we will never get to the poitn where we can say “No, the program runs
for ever.”

It turns out that there is no algorithm to decide whether a program halts on a given
input value. In our language of Turing machines, there is no Turing machine H with
the following properties.

� An input for H is a pair �hMi;w� consisting of a Turing machine description
and an input.

� IfM with inputw halts, thenH with input �hMi;w� halts in an accepting state.

� IfM with inputw fails to halt, then H with input �hMi;w� halts in an rejecting
state.

8



The result is troubling. We have a simple question about computation that has no
computable answer.

The proof that there is no Turing machine H is similar to the construction of a self-
reproducing program. Suppose that we have a Turing machine H that halts on all
inputs. We will find a Turing machine M and an input w for which H gives the
“wrong answer” for �hMi;w�. Let D be a Turing machine that, on input x, does the
following.

i. creates the pair �x;x�,

ii. simulates H on �x;x�, and

iii. accepts x if H rejects and loops forever if H accepts.

This is a symbolic activity that follows explicit rules and uses a bounded amount of
resource. Therefore, by the Church-Turing Thesis, it can be carried out on a Turing
machine. Let hDi be a description of this machine. What does D do on input hDi?

� If H accepts �hDi; hDi�, then D loops forever on hDi.

� If H rejects �hDi; hDi�, then D accepts hDi—and halts.

Either way, H gives the “wrong answer” for �hDi; hDi�, and H is not the “halting
checker” that we were seeking.

The problem of finding an algorithm that will tell us whether M halts on input
w is called the Halting Problem. The proof just sketched shows that there is no
computable solution to the Halting problem. It is an example of a problem that
has no computable solution. There is, of course, a non-computable solution to the
Halting Problem. The definition

H
�
hMi;w

�
�
(

0 if M halts on w, and
1 otherwise

is a perfectly well-defined mathematical function. It is just not a computable func-
tion.

Thnegative solution to the Halting Problem has important consequences. For exam-
ple, we cannot decide in a computational manner if a Turing-machine-and-input pair
enters a specific state, because if we could, we could apply that ability to the halting
state and determine whether another computation halts. Translated to programs,
we cannot decide—in an algorithmic manner—whether a program enters a partic-
ular block of code. This limits the ability of a compiler to eliminate “dead code.”
There are many similar “impossibility” results.

9


	1 Deterministic finite automata
	2 Nondeterministic automata
	3 Regular and non-regular languages
	4 Turing Machines
	5 The Church-Turing Thesis
	6 Self-reproducing Programs
	7 Universal Turing Machines
	8 The Halting Problem

