
Computer Science 52

Some Facts from Number Theory

Fall Semester, 2014

These notes are adapted from a document that was prepared for a different course
several years ago. They may be helpful as a summary of the facts that we use in
Computer Science 52 as we study RSA encryption. The exercises in this document
are left over from the previous course; although they are a tremendous amount of
fun, they are not part of the assigned work for Computer Science 52.

1 Quotients and Remainders

If m and n are integers, and n 6� 0, then there is a unique pair of integers q and r
satisfying

m � qn� r , and 0 � r < jnj.

Not surprisingly, q is the quotient and r is the remainder when m is divided by n.1

We say that n divides m, or n is a divisor of m, when the remainder is zero. The
notation n jm is used to signify that n divides m.

An integer p is a prime number if 1 < jpj and the only divisors of p are �1 and �p.

We write a � b �mod n� if b � a is divisible by n.2 This notion, called congruence,
is an equivalence relation. All the usual laws of arithmetic hold for congruence; for
example, we have the distributivity of multiplication over addition and the associa-
tivity of multiplication.

a�b � c� � ab � ac �mod n�
a�bc� � �ab�c �mod n�

When computing arithmetic results for a congruence, it does not hurt replace a value
by its remainder on division by n. This keeps the results in the range3 between 0
and jnj.

1Be aware that different processors compute remainders differently. The remainder operator % in
C may yield a result r which does not satisfy the stated inequality, but this will happen only when
one or both of the arguments is negative.

2The notation is potentially confusing. Here, “mod” is not used as an operator; we are not saying
that a is equivalent to �b mod n�. Rather, the equivalence between a and b depends on n. A better
notation might be a�n b.

3For encryption, n is most likely much larger than the largest possible integer. For this, we need
multi-word data structures and special library routines for the arithmetic operations.

1



2 Divisors

Suppose that a and b are integers, with one or both being non-zero. An integer d is
a greatest common divisor of a and b if

1. d j a,

2. d j b, and

3. if e j a and e j b, then e j d.

According to this definition, if d is a greatest common divisor of a and b, then so
is �d. We use the notation gcd�a; b� to denote the unique positive greatest common
divisor. The integers a and b are relatively prime if gcd�a; b� � 1.

The following theorem characterizes the greatest common divisor. As we shall see,
it provides an extremely useful tool.

Theorem 1 Suppose a and b are integers, at least one of which is non-zero, and let
d be the least positive integer of the form ua� vb. Then d � gcd�a; b�.

Proof: First observe that there are positive integers of the form ua � vb. (If a is
positive, just take u to be 1 and v to be 0. If a is negative, take u to be �1 and v
to be 0. If a is zero, then b is non-zero—take u to be 0 and v to be �1.) Therefore,
there is a least positive integer d of the appropriate form.

Suppose that d � u0a� v0b. Divide a by d to obtain a quotient q and remainder r :
a � qd� r and 0 � r < d. Then r � a� qd � �1� qu0�a� ��qv0�b, so r is of the
form ua� vb. But d was the least positive value of that form, and r is less than d.
Therefore r cannot be positive. The only possibility is for r to be zero, and in that
case, d divides a. In the same way, we conclude that d divides b.

If e divides both a and b, then e divides the combination u0a�v0b. Hence e divides
d. This completes the proof that d � gcd�a; b�.

Corollary 2 If gcd�a; n� � 1, then there is an integer u such that ua � 1 �mod n�.

Proof: There are integers u and v such that ua � vn � 1. We see that ua � 1 �
��v�n, so n divides ua� 1 and ua � 1 �mod n�.

Corollary 3 If gcd�a; n� � gcd�b; n� � 1, then gcd�ab; n� � 1.

Proof: Again, there are integers u and v such that ua�vn � 1. Similarly, there are
u0 and v0 such that u0b�v0n � 1. Multiply the left hand sides of the two equations
to get another expression that equals 1:

�uu0�ab � �uav0 �u0bv � vv0�n � 1:

2



The least positive combination of ab and n is therefore 1, and gcd�ab; n� � 1.

Another useful idea is Euler’s totient function, which is defined as follows. Let n
be a non-zero integer. Then ’�n� is the number of integers between 1 and n � 1
(inclusive) which are relatively prime to n. That is, ’�n� is the cardinality of the set
fj j 1 � j < n and gcd�j; n� � 1g.

Exercise 2.1. Show, directly from the definition, that gcd�a; b� is unique.

Exercise 2.2. Suppose that a and n are relatively prime and n divides ab. Show that
n divides b.

Exercise 2.3. Prove that a is relatively prime to b if and only if there are integers u
and v such that ua� vb � 1.

Exercise 2.4. Prove that p is a prime number if and only if ’�p� � p � 1.

Exercise 2.5. If p and q are different primes, show that ’�pq� � �p � 1��q � 1�.

Exercise 2.6. If p is a prime number and k is positive, what is the value of ’�pk�?

3 Euclid’s Algorithm

Theorem 1 is essential for characterizing the greatest common divisor, but it does
not directly give a very efficient algorithm for computing the gcd. The following
properties of the gcd function lead to Euclid’s algorithm for computing the greatest
common divisor.

Theorem 4 For integers a and b, not both zero, we have the following properties:

1. gcd�a; 0� � jaj.

2. gcd�a; b� � gcd�b; a�.

3. gcd�a; b� � gcd��a; b�.

4. If a � qb � r , then gcd�a; b� � gcd�r ; b�.

Proof: The first three properties can be proved directly from the definition of the
greatest common divisor. For the fourth, note that

ua� vb � ur � �uq � v�b;

so that any number of the form ua� vb can also be written in the form u0r � v0b.
Conversely, any number of the latter form can be written as a combination of a and

3



a = abs(a0); b = abs(b0);

while ((a != 0) && (b != 0))

if (a < b)

b = b % a;

else

a = a % b;

gcd = (a == 0) ? b : a;

Figure 1: Euclid’s algorithm for computing the greatest common divisor.

b. The set of positive integers of the form ua�vb is the same as the set of positive
integers of the form u0r � v0b. The least element of the set is the same in both
cases, and gcd�a; b� � gcd�r ; b�.

Euclid’s algorithm uses the properties of Theorem 4 to preserve loop invariants.
Suppose that the we wish to compute the greatest common divisor of two integers
whose values are stored in the C variables a0 and b0. The C code below starts by
establishing three invariants:

0 � a

0 � b

gcd�a; b� � gcd�a0; b0�:

This is easily done with the two assignments at the top of the code in Figure 1.
Properties 2 and 3 from Theorem 4 show that the invariant is established.

The invariants are preserved by the loop of Figure 1. Even though a or b may be
changed by an iteration of the loop, both variables remain non-negative. Moreover,
property 4 from Theorem 4 guarantees that the gcd does not change.

On each iteration, either a or b is made smaller. One of the variables must eventually
reach zero, and the loop will terminate. When it does, the other variable contains
the greatest common divisor by property 1. This is the value selected by the last
line in Figure 1.

For encryption, we often want to express the greatest common divisor in terms of
the original numbers a0 and b0,

gcd = u*a0 + v*b0.

In fact, the coefficients u and v are often more important than the value of the gcd
itself.

4



It is easy to modify the Euclid’s algorithm to provide the extra information. We
simply use four new variables and maintain two additional invariants.

a � ua� a0� va� b0

b � ub� a0� vb� b0

If we initialize the four variables correctly and preserve the invariants inside the
loop, then one pair of coefficients—either ua and va or else ub and vb—will be the
desired coefficients at the completion of the loop.

Exercise 3.1. Fill in the details in extending Euclid’s algorithm to find u and v such
that u*a0 + v*b0 is the greatest common divisor of a0 and b0.

Exercise 3.2. Show that Euclid’s algorithm makes at most 2�log2 a0 � log2 b0� loop
iterations. (In two iterations, either a or b becomes at least one bit shorter. Can you
find a better bound?)

4 Fermat’s Theorem

The following theorem is the heart of the RSA algorithm.

Theorem 5 (Fermat’s Theorem) If n 6� 0 and gcd�m; n� � 1, then

m’�n� � 1 �mod n�:

Proof: Consider the integers between 1 and jnj � 1 which are relatively prime to
n. There are ’�n� of them, and we can list them:

a1; a2; : : : a’�n�: (1)

For each i satisfying 1 � i � ’�n�, let a0i be the remainder upon division of mai

by n. Both m and ai are relatively prime to n, so by Corollary 3 the product mai

is relatively prime to n. Further, by property 4 of Theorem 4, the remainder a0i is
relatively prime to n. Therefore, a0i occurs among the elements of the list (1).

We next show that the elements in the list

a01; a02; : : : a0’�n� (2)

are all different. If a0j � a0k, then maj � mak �mod n�. We have that n divides
m�aj � ak�, so by the result of Exercise 2, n divides aj � ak. Because of the range
of values of the ai’s, this means that aj � ak, or equivalently, that j � k. Therefore,
the lists (1) and (2) contain exactly the same numbers, although perhaps in different
orders.

5



Multiplying the numbers in either list gives the same result:

a1a2 : : : a’�n� � a01a02 : : : a0’�n�;

or

a1a2 : : : a’�n� �ma1 ma2 : : : ma’�n� �mod n�
�m’�n� a1a2 : : : a’�n� �mod n�:

(3)

Each term in the product a1a2 : : : a’�n� is relatively prime to n. Using Corollary 3
inductively, the whole product is relatively prime to n. By Corollary 2, there is
a number u such that ua1a2 : : : a’�n� � 1 �mod n�. Multiplication by u effectively
“cancels” a1a2 : : : a’�n� from the members of Equation (3), leaving the desired result
1 �m’�n� �mod n�.

Corollary 6 (Fermat’s Little Theorem) If p is a prime number, then for all integers
m, m �mp �mod p�.

Exercise 4.1. Prove Corollary 6, Fermat’s Little Theorem. (Hint: Recall that ’�p� �
p � 1.)

Exercise 4.2. The specific fact upon which the RSA algorithm rests concerns the
product of two primes. If n is the product of two distinct primes p and q, prove
that m � m1�’�n� �mod n�, for all integers m. (The proof of this fact is sketched
in the RSA paper.)

5 Industrial Strength Primes

Suppose that we have a number p that we think is prime. If we choose a random
positive number a less than p, we can compute ap mod p. If the result is different
from a, then by Corollary 6, Fermat’s Little Theorem, we know that p is not prime.
If the result is a, then p may, or may not, be prime.

Now suppose that we repeat the test for many different values of a. If the two
values are ever unequal, then we can declare with certainty thatp is not prime. If,
after several tests, we do not discover evidence that p is non-prime, it is tempting
to declare p to be a prime number. However, there is a chance that we will make
a mistake and declare a number to be prime when it is in fact not. But by making
many such tests, we can make the probability of such an error very low. A number
declared prime on the basis of such a test is called an industrial strength prime.

Nearly all non-prime numbers will, with high probability, be exposed by this process,
but there are a few exceptions. Non-primes that will always be declared industrial

6



strength primes by our method are called Carmichael numbers. Although there is an
infinite number of them, they are rare—meaning that they are distributed sparsely
among the integers. The smallest Carmichael number is 561. Using more sophis-
ticated number theory, people have devised similar tests that do not have such a
defect. These tests satisfy the two properties below:

� If p is prime, then every test will report it as prime.

� If p is not prime, then a given test will report it as prime with probability less
than 1=2. Therefore, if we make k tests, the probability of an error is at most
1=2k, a very small number.

Observe that we are not making a statement about “the probability that p is prime.”
A number is either prime or it is not; there is no chance involved. We are saying
that, if a number is not prime, there is a small possibility that the test will give
wrong information.

To find an industrial strength prime number, we simply generate a random number
and test it, as above, several times. If it survives, we have our result. If not, we try
again with a different random number.

Exercise 5.1. A question for thought: The strategy here is “guess a number and see
if it is prime; if not, guess again.” This seems as bad, or worse, than a brute-force
search for primes. Why do we find primes after only a “reasonable” number of
guesses?

6 Polynomial-time Algorithms

These notes have been evolving since 1996. At that time, industrial strength pri-
mality testing was the only technology available. More recently, in 2002, the AKS
test for primality was developed. Refinements of it produce a deterministic test that
tells us whether or not a k-bit integer is prime in O�k6� time. There is, however, no
known way of factoring composite numbers in deterministic polynomial time.

7


	1 Quotients and Remainders
	2 Divisors
	3 Euclid's Algorithm
	4 Fermat's Theorem
	5 Industrial Strength Primes
	6 Polynomial-time Algorithms

