
Computer Science 52

Logic, Words, and Integers

1 Words and Data

The basic unit of information in a computer is the bit; it is simply a quantity that
takes one of two values, 0 or 1. A sequence of k bits is a k-bit word. Words have no
intrinsic meaning beyond the value of the bits. We can assign meaning to words by
interpreting them in various ways. Depending on the context we impose, a word can
be viewed as an integer, as a boolean value, as a floating point number, as a string
of letters, or as an instruction to the computer.

A single bit can be viewed as a boolean value with the possible values “false” and
“true.” In the next section, we look at the logical operations on truth values—or,
equivalently, on single bits.

A byte is an 8-bit word. Memory in modern computers is arranged as a sequence of
bytes, where adjacent bytes can be considered to be longer words. As we shall see
shortly, bytes can be viewed as the binary representations of integers ranging either
between 0 and 28 � 1 or between �27 and 27 � 1.

2 Propositional Logic

Propositional logic is a language to manipulate truth values. Expressions in propo-
sitional logic are constructed from

� constants, ? and >;

� variables, A, B, . . . ;

� parentheses, � and �; and

� connectives, :, ^, _, ), �, and �.

We interpret the expressions as statements about truth values or bits. The symbol ?
is read “bottom” and represents either 0 or “false.” The symbol > is read “top” and
represents either 1 or “true.” The connectives represent the following operations:

� : means “not” or “(boolean) negation.”

1



A �:A�
> ?
? >

A B �A^ B� �A_ B� �A)B� �A� B� �A � B�
> > > > > ? >
> ? ? > ? > ?
? > ? > > > ?
? ? ? ? > ? >

Table 1: The truth tables for the propositional connectives.

S ! E

E ! E � I j I

I ! D) I j D

D ! D _X j X

X ! X � C j C

C ! C ^N j N

N ! :N j B

B ! U j V j �E�

U ! ? j >
V ! A j B j : : :

Table 2: A context-free grammar that generates the expressions of propositional
logic.

� ^ means “and.”

� _ means “(inclusive) or.”

� ) means “implies” or “not greater than.”

� � means “exclusive or” or “unequal.”

� � means “equivalent” or “equal”

If we assign truth values to the variables in an expression, we can evaluate the
expression. We specify the actions of the connectives using truth tables. Table 1
shows the resulting truth tables for the connectives of propositional logic.

The logical expressions may be generated by a context-free grammar, which we dis-
cuss elsewhere in the course. For reference, the grammar appears in Table 2.

2



The truth tables for the connectives can be used to evaluate logical expressions. For
example, we can verify one of the de Morgan laws,

:�A^ B� � :A_:B:

An equality like this one means that the left and right sides have the same truth
value, regardless of the truth values of A and B. Table 3 shows some common
logical equivalences.

We adopt the convention that, in the absence of parentheses, the operation : is
done first, followed in order by ^, �, _, ), and �.

3 Gates

For each connective there is a corresponding component called a gate. A gate takes
electrical signals encoding to one or two logical constants as input, and produces
an output in the same format. The gates for the fundamental logical operations
are listed in Table 4. When working with gates, we usually use 0 and 1 for the
logical constants and call them bits. Combinations of logical operations correspond
to electrical circuits constructed from gates, as we shall see toward the end of this
document.

4 Words

As we mentioned, a sequence of k bits is a k-bit word. The operations of propo-
sitional logic may be applied to words, in which case they operate on the bits in
parallel. For example, the negation of the three-bit word 011 is 100, and the result
of an and-operation on 011 and 100 is 000. The study of these operations is called
“digital logic.”

Words often represent integers. There are two commonly-used ways to interpret
words as integers. Unsigned integers represent non-negative values, while signed
integers include negative values.

4.1 Unsigned Integers

A k-bit word can be interpreted as an unsigned integer by viewing the bits as the
“digits” in a binary expansion. Normally we take the right-most bit as the least
significant, or the “ones place.” If the word is bk�1bk : : : b1b0, then the value of the
unsigned word is

2k�1bk�1 � 2k�2bk�2 � : : :� 2b1 � b0 �
k�1X
i�0

2ibi:

3



A_> � >
A_? � A

A�> � :A

A�? � A

A � ::A

A � A^A

A_:A � >
A)A � >
A�:A � >

A_ B � B _A

A � B � B � A

A� B � B �A

A_ �B _ C� � �A_ B�_ C

A � �B � C� � �A � B� � C

A_ �B ^ C� � �A_ B�^ �A_ C�

A_ �A^ B� � A

A � B � �A)B�^ �B)A�

A)B � :A_ B

A_ B � :�:A^:B�

A_ B � :A)B

A^> � A

A^? � ?
>)A � A

?)A � >
A)> � >
A)? � :A

�:A)B�^:B � A

A � A_A

A^:A � ?
A � A � >
A�A � ?

A^ B � B ^A

A)B � :B):A

A^ �B ^ C� � �A^ B�^ C

A� �B � C� � �A� B�� C

A^ �B _ C� � �A^ B�_ �A^ C�

A^ �A_ B� � A

A� B � :�A � B�

A)B � :�A^:B�

A^ B � :�:A_:B�

A^ B � :�A):B�

Table 3: Some common propositional identities.

4



or

and

not

nor

nand

xor

Table 4: The gates corresponding to the logical connectives. The input lines are
on the left, and the output is on the right.

Unsigned k-bit integers range between 0 and 2k � 1, inclusive. The operations on
unsigned integers are the arithmetic ones: addition, subtraction, multiplication, di-
vision, remainder, etc. There are also the usual comparisons: greater, less, greater
or equal, and so forth.

Often, people make no distinction between a word and the unsigned integer it rep-
resents. One use of unsigned integers is to specify locations, or addresses, in a
computer’s memory.

4.2 Signed Integers

A k-bit word can also be interpreted as a signed integer in the range �2k�1 through
2k�1�1. The words that have a most significant, or leftmost, bit equal to 1 represent
the negative values. The leftmost bit is called the sign bit. The signed value of the
word bk�1bk : : : b1b0 is

�2k�1bk�1 � 2k�2bk�2 � : : :� 2b1 � b0 � �2k�1bk�1 �
k�2X
i�0

2ibi:

The difference between the unsigned value and the signed value is the minus sign on
the largest power of two. Notice that the word “signed” does not mean “negative.”
The signed interpretation gives us positive and negative values.

This representation of signed integers is called two’s complement. Other representa-
tions of signed integers exist, but they are rarely used. The programming languages
Java and SML use two’s complement signed integers exclusively. The programming
languages C and C++ have both signed and unsigned integer types.

Table 5 shows the signed and unsigned values of three-bit words. Most current
processors use 32-bit words, although 64-bits is becoming more common. Here, we
use fewer bits to make our examples easier, but the ideas are the same.

Interestingly, addition and subtraction can be carried out on unsigned and signed
interpretations using the same algorithms. We simply use the binary analogs of the

5



integer unsigned signed

7 111
6 110
5 101
4 100
3 011 011
2 010 010
1 001 001
0 000 000
�1 111
�2 110
�3 101
�4 100

Table 5: Three bit words, as unsigned and two’s complement signed values. Ob-
serve that the bit string 101 can mean 5 or �3, depending on the interpretation.

usual methods for adding and subtracting decimal numbers. Other operations, like
comparisons and multiplication, require different methods—depending on whether
we are thinking of the values as unsigned or signed.

4.3 Negation and Sign Extension

Negation of a two’s complement signed value is accomplished by bitwise comple-
menting the value and then adding one (and ignoring any carry into the k � 1-st
place). To convince yourself that this process is correct, let x be a k-bit word and x
be its bitwise complement. The sum x � x is a word with all 1’s, whose value as a
signed integer is �2k�1 �

Pk�2
i�0 2i � �1. Therefore, x � x � �1, so that x � 1 � �x.

We sometimes want to convert a k-bit word into a j-bit word, with j greater than
k. If we are thinking of the words as unsigned integers, we just add zeroes on the
left. If we are thinking of them as signed integers, then we copy the sign bit on the
left as many times as necessary to create the longer integer. The latter process is
called sign extension, and it yields a longer (more bits) word representing the same
signed integer. For example, �3 is represented in three bits by 101 and in six bits
by 111101.

4.4 Words in Modern Computer Systems

Computers and programming languages use different size words as their fundamen-
tal quantity, and unfortunately, there is considerable variation from one system or

6



language to another. A byte is always 8 bits.

In Java, a short is a 16-bit integer quantity, an int has 32 bits, and a long has 64.
All of these are interpreted as signed.

In C, the number of bits in a short, int, and long can vary across different com-
puters, but nowadays, C usually agrees with Java. Any of these can be given signed
or unsigned interpretation.

4.5 Addition

As mentioned earlier, the process of addition is the same for unsigned and signed
quantities. The addition

010
�001

011

is correct whether we are thinking of unsigned or signed numbers. However, some-
times a result is “out of range,” the conditions for which differ depending on how
we interpret the numbers. The addition

011
�110

001

is a correct instance of binary addition. The “carry out” from the leftmost bit is
discarded. With unsigned integers, the result is erroneous; the result of the sum 3�6
is out of the range of three-bit integers. On the other hand, with signed integers, the
addition is 3���2� and the result is correct. Contrastingly, the result of the addition

011
�010

101

is correct for the unsigned interpretation, but in the signed case, it adds two positive
values and obtains a negative one. Colloquially, such problematic situations are
termed “overflow.” Below, we discuss ways to detect it.

4.6 Subtraction

Subtraction is simply negation followed by addition. One complements the bits in
the number to be subtracted and then adds with an extra “carry” into the low order
bit. Thus

7



011
�010

001

becomes

1

011
�101

001

The “carry out” from the leftmost column is discarded. This method for subtraction
is correct in both the unsigned and signed cases. As in the case of addition, there is
the opportunity for erroneous results due to “overflow.”

4.7 Shifts

In addition to the bitwise logical operations and the arithmetic operations, we may
also shift the bits in a word to the left or to the right. Most programming languages
provide shift operators.

A left shift shifts the bits to the left. The most significant bits are lost, and zeroes
are shifted in on the right. A left shift is a handy way to multiply a small number by
a power of two. Java and C++ use the notation x<<k to shift the bits in x to the left
by k places.

An arithmetic right shift shifts bits to the right. The least significant bits are lost,
and the sign bit is replicated on the left. A left shift preserves the sign of the original
word, and it is a handy way to divide by a power of two. Java uses the notation x>>k

to shift the bits in x to the right by k places.

A logical right shift also shifts the bits to the right, but the bits on the left are
replaced by zeroes. Java uses the notation x>>>k for the logical right shift.

The programming language C has only one right shift operator, >>. Most compilers
choose the arithmetic right shift when the first operand is a signed integer and the
logical right shift when the first operand is unsigned.

5 Circuits for Addition and Subtraction

Since words are composed of bits, we can use the gates described in Table 4 to
create circuits to carry out arithmetic operations. If we are adding two bits A and B,
the sum bit is simply the A� B and the carry bit is A^ B. The circuit on the left in
Table 6 shows a half adder that computes both the sum and the carry.

The circuit on the right in Table 6 shows how two half adders can be combined to
form a full adder which corresponds to one column of an addition operation. The
inputs are the bits A and B and a carry-in bit from the previous column. The results
is the sum bit and a a bit to carry out to the next column.

8



A
B

carry

sum
A
B

carry-out

carry-in

sum

Table 6: A binary half adder (left) and a full adder (right).

If we want to add n-bit words, we can do it with a circuit constructed from n full
adders, as shown in Table 7. Each adder corresponds to one of the n columns in the
addition problem. The carry-in to the low order column is 0, and the carry-out from
the high order column is discarded. The circuit is called a ripple-carry adder.

If we want to subtract n-bit words, we use a slight modification of the ripple-carry
adder. Recall that subtraction is negation followed by addition and that negation is
complementation followed by adding one. The bit D in the circuit on the right in
Table 7 controls whether the operation is addition or subtraction. If D is zero, the
circuit behaves just like the ripple-carry adder on the left. If D is one, the circuit
computes the sum of the A bits, the complement of the B bits, and 1. That operation
amounts to subtraction.

6 Overflow and comparisons

When addition is performed on many computers, four one-bit quantities (besides
the usual result) are produced:

C is the the carry-out bit out of the leftmost column

Z is 1 if result is zero and 0 otherwise,

N is the sign bit of result, and

V is 1 if there is “signed overflow” and 0 otherwise.

“Signed overflow” means that two quantities with the same sign produce a sum with
the opposite sign.

For subtraction, the bits are set similarly, except that C is the “borrow bit,” which is
set if the subtraction requires a borrow into the leftmost column. (This convention
is reflected in the right hand circuit in Table 7, where the carry-out bit is passed

9



0

A0
B0

sum0

A1
B1 carry-out

carry-in

sum1

A2
B2

sum2

...

An
Bn

sumn

carry

D

A0

B0
result0

A1

B1 carry-out

carry-in

result1

A2

B2
result2

...

An

Bn
resultn

carry

Table 7: A ripple-carry adder (left) and a variation that both adds and subtracts
(right). Each box is a full adder.

through a xor-gate. The use of C as a borrow bit is common but not universal.
Some processors use the carry-out from the last adder without modification.) Signed
overflow for the subtraction x�y means that x and y have different signs, and the
sign of x �y is different from x.

It is not hard to imagine how to modify the ripple-carry adders in Table 7 to produce
all four bits.

The flags allow us to compare integer values. When two quantities are subtracted,
the flags will tell us whether the first was less than, equal to, or greater than the
second. Any decision about the comparison can be based entirely on the flags; the
actual result of the subtraction is not required.

To compare two unsigned integers, one subtracts the quantities, discards the result,
and observes the flags. For unsigned interpretations, x < y when there is a “borrow”
into the leftmost column upon computing x�y . That corresponds to the condition
C � 1. We see that

10



x < y if C � 1,

x � y if C � 1 or Z � 1,

x � y if Z � 1,

x 6� y if Z � 0,

x � y if C � 0, and

x > y if C � 0 and Z � 0.

For signed integers, we compute x � y in a similar fashion and use a different
interpretation of the values of the flags:

x < y if N � V � 1,

x � y if Z � 1 or N � V � 1,

x � y if Z � 1,

x 6� y if Z � 0,

x � y if N � V � 0, and

x > y if Z � 0 or N � V � 0.

To see why these conditions are correct, consider the example of x < y . The result
N�V � 1 means N 6� V , which is to say that the result x�y is negative and correct,
or it is non-negative and incorrect. Either way, x < y .

7 A Memory Circuit

Because a computer performs a sequence of operations, there must be a way of
storing the result of one step for use in a later step. The circuit in Table 8 is a one-
bit memory, called a clocked D-latch. Although the operation is easy to state, the
mechanism is a little difficult to understand.

There is a line labeled clock, which is normally low. While it is low, the output line
V maintains a value that does not change. It can be used as input to other circuits,
possibly for a long period of time. The value of V is changed by raising the clock
signal momentarily. When that happens, V takes on whatever value is on the input
line D. As with an adder, it is easy to imagine several latches connected in parallel
to provide memory for a word.

Why does the clocked D-latch work? One could trace through the circuit with all
possible values of D, clock, and V , but that is confusing and unenlightening. An
alternative is to translate to propositional logic and use some identities. For nota-
tional convenience, let us use C for the clock signal and V for the output. Let X

11



V

D

clock

X

Table 8: A clocked D-latch. It is a one-bit memory in which V retains the value
that D had when the clock was last high.

be the output of the top nor-gate as indicated in Table 8. The outputs of the two
and-gates are D ^ C and :D ^ C , so we have

X � �D ^ C� nor V
V � �:D ^ C� nor X

(1)

When C is false (or 0, signifying that the clock signal is low), both conjunctions are
also false. Using the identity ? nor A � :A, which is easy to check, the equations
become

X � :V
V � :X

This is the stable situation mentioned above.

When C is true, the equations (1) become

X � D nor V
V � :D nor X

This is an application of the identity A^> � A in Table 3. Because working with nor
is unintuitive, we use another easily-checked identity, A nor B � :A^:B, to rewrite
the equations.

X � :D ^:V
V � D ^:X

Eliminate X by substituting the right-hand side of the first equation for X in the
second, and use a DeMorgan law to obtain

V � D ^:�:D ^:V� � D ^ �D _ V�:

Truth tables now tell us that the only way that this can hold is if V � D, which is
what we claimed happens when the clock signal is high. When the clock goes low
again, V retains its value.

This kind of memory is usually used on the processor unit itself. It is too com-
plicated and expensive to be used for the computer’s main memory. The random
access memory on a computer is usually implemented with simple capacitors that
store an electrical charge.

12



8 Floating-Point Numbers

Many numbers that we encounter in our computations are not integers; they have
fractional parts. For completeness, we describe the representation that most com-
puters use for numbers that are not integers.

We introduce a “binary point” that is used analogously to a decimal point. The
expression �10011:110012 is the binary representation for�19:7812510. The posi-
tions to the right of the binary point represent 1=2, 1=4, 1=8, and so on, so that the
fractional part :11001 corresponds to 1=2�1=4�1=32. We can write the number as

�1:001111001� 24:

(A binary purist would have written the exponential part as 102
1002 , but that seems

excessively cumbersome.) These numbers are called floating-point because the bi-
nary point “floats” according to the exponent. Unless the number under considera-
tion is zero, we normalize the presentation so that there is a single 1 to the left of
the binary point.

8.1 Single and Double Precision

A number in binary scientific notation is determined by its sign, fraction, and ex-
ponent. Most computers now use IEEE Standard 754, which specifies a format for
storing these three quantities. There are two variants of the standard: single preci-
sion and double precision. They correspond to float and double, respectively, in
Java.

The single precision format uses four bytes, or 32 bits: one bit for the sign, eight
bits for the exponent, and 23 bits for the fractional part. The sign bit is 1 if the
number is negative and 0 otherwise. The sign bit is followed by the eight bits for the
exponent, and then the fractional part is placed in the remaining bits, padded with
0’s on the right if necessary.

The exponent is a signed value, but it is not represented as a two’s complement
integer. Instead it uses the excess 127 representation. The value of the exponent is
the unsigned value of the eight bits minus 127. In this representation, the exponent
can take on values from �127 through 128.

The number in the example above would have the single precision representation

1 10000011 00111100100000000000000:

The actual unsigned value of the eight exponent bits is 13210; subtracting 127 gives
the actual exponent of 4. Note that only the fraction proper, and not the 1 to the left

13



Single Precision Double Precision

Sign bits 1 1

Exponent bits 8 11

Fraction bits 23 52

Exponent system excess 127 excess 1023

Exponent range �126 to 127 �1022 to 1023

Largest normalized about 2128 about 21024

Smallest normalized 2�126 2�1022

Smallest denormalized about 10�45 about 10�324

Decimal range about 10�38 to 1038 about 10�308 to 10308

Table 9: A summary of the two types of IEEE floating-point numbers. (Adapted
from Tanenbaum, Structured Computer Organization, Prentice-Hall, third edition,
1990.)

of the binary point, appears. That allows us to squeeze one extra bit of precision
into the 32-bit single precision number.

The double precision format is similar, except that it uses eight bytes. The sign still
takes only one bit. The exponent occupies 11 bits using excess 1023 representation,
and the remaining 52 bits are devoted to the fraction. With a larger possible expo-
nent and more bits in the fraction, double precision numbers can have larger values
and more “significant figures” than single precision ones. Table 9 compares the two
formats.

Notice in Table 9 that the exponent range for single precision is from �126 to 127,
not �127 to 128 as might be expected. The two extreme exponents are reserved for
special purposes. Table 10 shows the five forms of floating-point numbers: normal-
ized, denormalized, zero, infinity, and not a number.

The normalized form is the one that we have been describing so far. Let B be the “ex-
cess” amount in the representation of the exponent; in the case of single precision,
B � 127. The floating-point number

sign exponent fraction

is in the normalized form if the exponent does not consist of all O’s or all 1’s. It has
the value

�1:fraction� 2E�B ;

where E is the unsigned value of the exponent bits. As always, the value is negative
if the sign bit is 1.

14



Sign Exponent Fraction

Normalized � 0 < exp < max any

Zero � 0 zero

Denormalized � 0 non-zero

Infinity � max zero

Not a number � max non-zero

Table 10: The five forms for floating-point numbers. The values in the exponent
column are the unsigned values, ranging from 0 to a maximum of 11 : : : 12. (Also
adapted from Tanenbaum.)

The zero form is the representation for the number zero. All bits, except perhaps
the sign bit, are zero. There are two representations of zero, one “positive” and the
other “negative.” A computer must be designed to recognize that they are the same.

The denormalized form provides a way to represent much smaller positive numbers
than would otherwise be possible. The sign bit and the exponent, which consists
of all 0’s, are interpreted as in the normalized case. The difference is that, with
denormalized numbers, the bit to the left of the binary point is taken to be 0 instead
of 1. The smallest positive value that can be represented in single precision has the
denormalized representation

0 00000000 00000000000000000000001;

which translates to

�0:00000000000000000000001� 20�127:

There are 23 fraction bits, so the number is 2�150, quite a bit less than the smallest
normalized positive number of 2�126.

The two remaining forms, infinity and not a number, arise as the result of overflow
or other errors. The IEEE standards specify the results of operating on these as well
as the more conventional forms.

8.2 Numerical Computations

Arithmetic on floating-point numbers is analogous to arithmetic on numbers ex-
pressed in decimal scientific notation. For addition, one must shift the binary point
of one term so that the exponents are the same before adding. This requires the
disassembly of the sign, exponent, and fraction part before the operation and sub-
sequent reassembly. Usually, the calculation is carried out by specialized hardware.

15



Other operations on real numbers, like the calculation of square roots and trigono-
metric functions, are done using approximation techniques.

The finite range and precision of floating-point numbers can cause errors that would
not arise if one were working with perfectly exact mathematical objects. An entire
branch of mathematics, numerical analysis, is devoted to studying computation with
these approximations that we call floating-point numbers. In this section, we are
content to indicate a few of the most common considerations.

Although we sometimes talk about floating-point “reals,” many of the usual math-
ematical laws for real numbers fail when applied to floating-point numbers. For
example, the associative law �x � y� � z � x � �y � z� does not hold for floating-
point; can you find a counterexample?

The order of operations makes a difference. The expression

�1� 2�26 � 2�26 � : : :� 2�26| {z }
226 terms

is zero mathematically, but the result will be �1 if it is computed from left to right
with single precision numbers. Individually, the terms on the right are too small to
change the �1. It does not help much to start at the right, either; the result is �0:75
in that case.

Even in the best of cases, floating-point results will be approximations. This is be-
cause of small errors that creep in when input values are converted from decimal to
binary and round-off errors that can occur with every calculation. A result of this
observation is good advice: Never test floating-point numbers for equality! Two num-
bers may be mathematically equal, but as results of floating-point computations, the
bit patterns will be slightly different. Instead of asking whether x and y are equal,
always ask whether jx �yj is less than some (small) positive tolerance.

9 Other Kinds of Data

So far, we have seen numbers: signed and unsigned integers and floating point
numbers. The common non-numeric data types are characters, strings, boolean
values, and pointers.

Characters are represented as integers, with a mapping between the letters and the
numbers that represent them. One common encoding is ASCII, which represents
characters with a single byte. In that system, the byte 0011 0100 is the character 4

(not to be confused with the integer 4), and 0110 1101 is the lower-case letter m. The
specifics of the correspondence are usually not important.

16



In recent years, people have recognized the limitations of the small size of the ASCII
character set. An alternative is the Unicode encoding, which uses sixteen bits and
has a much richer collection of letters. Java uses the Unicode system, and its primi-
tive data type char is a sixteen-bit unsigned integer.

The boolean values, false and true, can be represented by single bits, but on most
computers it is inconvenient to work with a data object smaller than a byte. Most
frequently, boolean values are one word, the same size as integers. Usually the
word with all 0’s corresponds to false and the word whose unsigned value is 1 cor-
responds to true. Other words may or may not correspond to boolean values. (In C,
there is no specific boolean type. That language uses the type int, interpreting zero
as false and any non-zero value as true. C++ recognizes the same convention, but
recently the bool type was added to the language, and programmers are encouraged
to use it.)

As we shall see in another part of the course, the memory in a computer is simply
an array of bytes. Pointers are usually (but not always) interpreted as indices into
that array. That is, a location in memory by counting the number of bytes from the
beginning, and a pointer is an unsigned integer which signifies a location. It is a
matter of some debate whether or not a programmer should make extensive use of
this representation.

Arrays are formed by placing the elements next to one another in memory. Strings
can be viewed as arrays of characters, and in many programming languages they are
exactly that. In other languages, strings are have a more sophisticated representa-
tion.

10 Transistors

Although most computer scientists can function quite well without knowing exactly
how gates work, it is interesting to go one level deeper into the physical computer.
Most gates are constructed from semiconductor devices called transistors. A tran-
sistor is a kind of switch, shown as the circular object in the diagram of Table 11.
The signal on one wire, called the base, controls the current flowing between two
other wires, the collector and the emitter.

In digital circuits, there are only two relevant voltages—low and high. They are
the ones at the points marked ground and Vref, respectively, in Table 11. In other
applications, like stereo sound equipment, transistors are used as amplifiers, and
the variations in the signal at the base are reproduced with greater magnitude at the
collector.

We take the voltage at the point marked “ground” to be zero, and supply a higher
voltage at Vref. When the voltage at the base is near zero, there is no connection

17



base

collector

Vref

emitter

resistor

ground

Table 11: A diagram of a typical transistor. The circular object with three leads
is the transistor. The emitter is connected to ground, a zero voltage, and the
collector is connected to a higher reference voltage.

between the collector and the emitter, and the voltage at the collector is close to the
reference voltage. Conversely, when the voltage at the base is high, then current can
flow between the collector and the emitter. The collector is effectively attached to
the ground, and the voltage level is zero there.

The two voltage levels can be interpreted as bits, with the ground state being 0 and
a high voltage being 1. When the base of a transistor is 0, the collector is 1, and vice
versa. Under this interpretation, the transistor illustrated in Table 11 is a not-gate
whose input is the base, and output is the collector. With two transistors, we can
construct nor- and nand-gates, as shown in Table 12.

Using nor, not, and nand and the identities of Section 2, one can construct all the
gates that we have discussed. With a large enough supply of transistors, one can
construct a computer. Ten years ago, a processor chip had about twenty million
transistors—give or take a factor of two. Today, a typical number is half a billion.
One of Intel’s high end processors has two billion.

18



A

not A

Vref

B

A

A nand B

Vref

A B

A nor B

Vref

Table 12: Three common gates, nor, not, and nand, constructed from transistors.

19


	1 Words and Data
	2 Propositional Logic
	3 Gates
	4 Words
	5 Circuits for Addition and Subtraction
	6 Overflow and comparisons
	7 A Memory Circuit
	8 Floating-Point Numbers
	9 Other Kinds of Data
	10 Transistors

