
Computer Science 52

The CS41B Machine

Spring Semester, 2015

Contents

1 The Machine . 1

2 Assembly Language and Programs 6

3 The CS41B Instruction Set . 20

4 Real Computers . 23

A The CS41B Application . 30

B Sample Programs . 35

C Historical Note . 44

D Exercises . 44

E Assembly Language Quick Reference 49

Copyright © 2015 Everett L. Bull, Jr.
All rights reserved

The CS41B Machine is a rudimentary model of a computer, used to understand how
real computers operate at a low-level. We will use it to study how data are stored,
how programs are executed, and how recursion is implemented at the machine level.

We begin in Section 1 with a description of the machine and its operation. Then
in Section 2, we describe the assembly language and see how programs are run.
In Sections 3, we look at how the instructions are encoded as binary words, and
in Section 4 we compare the CS41B Machine with real computers. The appendices
contain documentation for the application that simulates our model, some sample
programs, exercises, and a quick reference sheet for the assembly language.

1 The Machine

The fundamental data type of the CS41B Machine is the 16-bit word, two bytes. As
unsigned integers, these words take on values between 0 and 216 � 1.

The CS41B Machine consists of a memory and five registers. There is a set of in-
structions that modify the values in memory and registers. A program is simply a
sequence of instructions.

1.1 Memory

The memory is an array of bytes. Each index into the array is itself a word, inter-
preted as an unsigned value. An index into the memory array is called an address
or a location. The number of bytes in a memory can vary, but it can never be larger
than 216 bytes. In our work, the memory will be much smaller.

Even though memory is indexed by bytes, the size of a transaction with memory is
the word. The word at address addr is formed by taking the low order byte from
address addr and the high order byte from address addr � 1. This scheme is used
even in the unusual case in which addr is odd. We use the notation mem�addr� to
refer to the word at address addr. Consecutive words in memory have addresses
that differ by two.

The word values in memory can be used and changed. We load a value from a mem-
ory address in order to use it, and we store a new value at a memory address. The
word values stored in memory can be interpreted as signed integers, as unsigned
addresses into memory, or as instructions to the CS41B Machine.

Memory location 0 has a special use in the CS41B Machine. Rather than storing a
value, it is the conduit for input and output. By obtaining a value from mem�0� a
program can acquire data from the user. Storing a value at address 0 is the way to

1

create output. Values for input and output are interpreted and displayed as signed
integers.

1.2 Registers

All of the actual computation takes place in the registers. A register is a component
that holds the value of one word. There are five registers in the CS41B Machine.
Register ic is the instruction counter; it holds the address in memory of the next
instruction to be executed.

The other four registers hold data values on which the machine operates. Register
r0 is special in that it always contains the value zero; any attempt to change it is
ignored. The other registers, r1, r2, and r3, are general-purpose registers whose
values can be read and modified by program instructions.

The CS41B Machine itself does not reserve the data registers for any particular pur-
pose. Later, when we encounter subprograms, we will adopt conventions for the use
of the registers.

1.3 Instructions

An instruction to the CS41B Machine is a tiny step of a computation; it may change
a value in a register or at a memory location.

From the CS41B Machine’s point of view, instructions are simply sixteen-bit quan-
tities. Later, we shall see exactly how these instructions are encoded as words in
memory. As human beings, we usually write instructions in a more understandable
way, using the CS41B Assembly Language. Each instruction consists of a three-letter
abbreviation followed by up to three arguments, which may be registers or numeri-
cal values. For example, the instruction

add r3 r2 r2

causes the machine to add the value in r2 to itself and place the result in r3.
The convention, consistent with assignment statements in other programming lan-
guages, is that the leftmost register is always the one that is being changed. Simi-
larly,

loa r3 r1

causes the machine to use the value in r1 as an address and to place the value from
that memory address into r3.

2

abbreviation arguments action

Register Instructions

mov RR- dest � src0

neg RR- dest � �src0

add RRR dest � src0� src1

sub RRR dest � src0� src1

adc RRS dest � src0� arg

sbc RRS dest � src0� arg

lcw R-W dest � arg

lcl R-U lowbyte�dest� � arg

lch R-U highbyte�dest� � arg

Table 1: The CS41B Assembly Language instructions that affect data registers. The
first argument is always a register. The second one, if it appears, is also a register.
If there is an argument in the third position, it can be a register, a signed byte, an
unsigned byte, or a full word.

The arguments in an instruction can be registers, numerical values, or labels refer-
ring to locations in the program. In specifying arguments, we use dest to refer to
the (leftmost) destination register, and we use src0 and src1 to refer to the other
two register arguments. Only one of the three possible arguments can be a non-
register; if it is present, it must be the last argument. We use arg to refer to a
non-register argument that replaces src1.

An instruction may change the value in a register or in a memory location, but not
both. Each instruction also changes the value in ic, usually by incrementing it by 2
to move on to the next instruction in sequence.

Table 1 through Table 4 list all the CS41B Assembly Language instructions. That
information also appears in a handy one-page summary in Appendix E at the end of
this document.

Table 1 contains the instructions that operate on data values in registers. The reg-
ister instructions carry out arithmetic (or other) operations and place the result in
the destination register.

Table 2 contains the instructions that interact with memory. The instructions sto

and loa transfer data between a register and a memory location. We use sto to
store a value from a register into memory and loa to load a value from memory
into a register. There is an apparent asymmetry in the way that sto and loa are

3

abbreviation arguments action

Memory Instructions

sto RR[S] mem�dest� arg� � src0

loa RR[S] dest � mem�src0� arg�

psh R-- push the value in dest

pop R-- pop the top of stack into dest

Table 2: The CS41B Assembly Language instructions that affect memory. The
third argument, a signed byte, to the sto and loa instructions is optional.

written; it may be confusing at first. Just remember that the destination—whether
it is a register or a memory location—always corresponds to the register on the left.

The byte argument to sto and loa is optional; it is assumed to be zero if it is not
present.

Do not worry about the details of the stack instructions psh and pop for now; we
will explore them later.

Table 3 contains the instructions that control the sequence of instructions being
executed. The instructions jmp and cal are used to invoke, and return from, sub-
programs. (Subprograms are also called functions or methods or procedures.)

Table 4 contains branch instructions that adjust the instruction counter by the
amount specified in the signed argument. They are used in conditional execution
(if-then-else statements) and loops. For example, brs with a negative argument can
be used to go back to the top of a loop for another iteration.

All of the branch instructions except brs are conditional branch instructions which
take their branch if some relationship between dest and src0 is satisfied. If the
relationship is not satisfied, control simply proceeds to the next instruction in the
sequence.

A pathological example is the instruction blt r0 r1 2. It “branches” to the next
instruction regardless of the relationship between the values in r0 and r1. Another
pathology is brs 0; it is the world’s shortest infinite loop.

The instruction pau exists for convenience in debugging programs and is not log-
ically part of the CS41B structure. See Appendix A for details on the behavior of
pau.

4

abbreviation arguments action

Control Instructions

nop --- do nothing

hlt --- stop the machine

pau --- pause the machine

jmp R-- ic � dest

cal RR- dest � ic and ic � src0

Table 3: The CS41B Assembly Language instructions that control the behavior of
the machine. These instructions may change the ic, but they do not change any
values in data registers or memory.

abbreviation arguments action

Branch Instructions

brs --S ic � loc� arg

beq RRS if dest � src0, ic � loc� arg

bne RRS if dest 6� src0, ic � loc� arg

blt RRS if dest < src0, ic � loc� arg

ble RRS if dest � src0, ic � loc� arg

bgt RRS if dest > src0, ic � loc� arg

bge RRS if dest � src0, ic � loc� arg

Table 4: The CS41B Assembly Language branch instructions control the sequence
of execution. These instructions change the instruction counter by (conditionally)
adding a signed value to ic. The address of the currently-executing instruction is
loc.

5

1.4 Programs

A program is simply a sequence of instructions stored in the machine’s memory. In
executing a program, the CS41B Machine follows a simple loop: The word at location
ic is retrieved and interpreted as an instruction, and that instruction is carried
out. Then the process repeats with the next instruction, until the hlt instruction is
encountered.

More specifically, the CS41B Machine cycles through the following steps.

� The machine fetches the value at mem�ic� for use as an instruction.

� The machine increments the value in ic by 2.

� The machine decodes and carries out the instruction.

Notice that, while an instruction is being executed, the value in ic is the address of
the next instruction. This detail is important in implementing branch instructions.

1.5 Errors

There are two situations which will cause the CS41B Machine to report an error and
halt.

1. A word that is to be interpreted as an address is too large for the actual mem-
ory.

2. A word that is to be interpreted as an instruction is not a legitimate instruc-
tion.

There are other errors from which the CS41B Machine offers no hardware protection.
For example, there is no simple way to test for arithmetic overflow, and there is no
way to prevent data from being interpreted as instructions, or vice versa.

2 Assembly Language and Programs

This section describes the assembly language that we use to write programs for the
CS41B Machine.

2.1 Assembly Language Structure

An assembly language program is a sequence of lines, with each line being composed
of a label, a command, arguments, and a comment. All the components are optional.
The EBNF syntax for CS41B Assembly Language is given in Table 5.

6

hprogrami ::� fhlineiheolnig
hlinei ::� �hlabeli� �hinstructioni� �hwhitespacei� �; hcommenti�
hinstructioni ::� hwhitespaceihcommandi fhwhitespaceihargumentig
hcommandi ::� nop j hlt j cal j : : :

hargumenti ::� hregisteri j hlabeli j hdecimal numberi
hregisteri ::� r0 j r1 j r2 j r3

hdecimal numberi ::� �-� hdigiti fhdigitig
hdigiti ::� 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9

hwhitespacei ::� hblanki fhblankig

Table 5: The EBNF specification for the CS41B Assembly Language.

Labels The label, if it exists on a line, begins in the left column. Although there
is no entry for labels in the EBNF of Table 5, one is not hard to write. A label must
begin with a letter and contain only letters, digits, and underscore characters. The
assembly language is not case-sensitive.

A label that begins in the first column is called the declaration of the label. A label
may be declared only once. A label is an anchor, an abbreviation for the location in
the program where it is declared.

A label may be used as a byte or word argument anywhere in the program. It is
not necessary that declaration come before use. Labels are frequently used with
the branch instructions, in which case the assembler computes the offset from the
current instruction to the location of the label and inserts that offset into the branch
instruction. Another use of a label is as an argument to the lcw instruction: the
location specified by the label is loaded into a register.

The branch instructions and lcw are nearly always used with labels. Other instruc-
tions normally have numerical values for their byte arguments.

Comments A semicolon starts a comment that lasts to the end of the line. The
semicolon and the remainder of the line are ignored by the assembler.

A line is terminated by a system dependent end-of-line symbol. The nonterminals
heolni, hblanki, hlabeli, and hcommenti are left undefined in Table 5. Usually, blanks
are defined to include spaces and tab characters. The reader is invited to supply
specifications for them.

Commands and Arguments A command is a three-letter assembly language in-
struction or one of the directives dat or end. An assembly language instruction

7

must be followed by arguments appropriate for that instruction. For example, add

must be followed by three registers chosen from among r0, r1, r2, and r3. Byte or
word arguments can be numeric values or labels.

The directive dat reserves space for data; no instructions appear in a data area. The
argument to dat is an integer indicating the number of bytes to reserve. A data area
may be composed of any number of consecutive dat directives, but the data areas
must lie before or after the executable code. A data area may not appear between
actual CS41B instructions.

The directive end signals the end of the instructions and directives in the source file.
Anything after an end directive is ignored. The end directive takes no arguments and
is required.

2.2 Developing Programs

The following sections contains several examples of CS41B programs that illustrate
the fundamental features of a programming language. We begin with a simple, lin-
ear, five instruction program and proceed to look at the structure of loops, condi-
tional execution, and subprograms.

Assembly languages are often cryptic, and programs are difficult to follow. Program-
ming requires careful attention to detail. Most assembly programmers adopt a high
standard of documentation: virtually every line has a comment explaining what is
happening.

Full listings of the programs developed in this chapter appear in Appendix B. Files
containing the sample programs can be found in the on-line course resource mate-
rials.

2.3 Straight-line Code

The simplest of our example programs is one that accepts two integers and prints
their difference. It has only five executable instructions: read, read, subtract, write,
and halt. The instructions, shown below, are executed one at a time in order. No-
tice the use of r0 in the load and store instructions to access the CS41B Machine’s
input and output facilities. This program appears among the example programs as
subtract.a41.

loa r2 r0 ; get first value

loa r3 r0 ; get second value

sub r2 r2 r3 ; subtract them

sto r0 r2 ; print result

8

hlt ; quit

end

2.4 Loops

Suppose that we want to multiply two numbers instead of subtracting them. The
CS41B Machine has no multiply instruction, so we resort to repeated addition. (Warn-
ing: This is not how real computers multiply! The example gives us a clean and sim-
ple illustration of a loop, but no real computer—or real programmer—would ever
do anything so inefficient.) Starting with non-negative numbers a and b, we want to
initialize a value result to zero and then add b to it a times.

result = 0;

while (0 < a) {

result += b;

a--;

}

Let us use r1 for a, r2 for b, and r3 for result. Notice how faithfully the assembly
language code below follows the while-loop.

add r3 r0 r0 ; result = 0;

loop

ble r1 r0 endloop ; stop if a <= 0

add r3 r3 r2 ; result += b;

sbc r1 r1 1 ; a--;

brs loop ; return for another iteration

endloop

We could package this code with two input commands and an output command and
have a multiply program just like our subtraction program, but there is a further
refinement: Notice that the target of the brs instruction is another (conditional)
branch instruction. Why branch to a conditional branch? Why not make the test
in the first branch? We can change the logic slightly and eliminate one instruction
from the body of the loop.

add r3 r0 r0 ; result = 0;

ble r1 r0 endloop ; test if a <= 0

loop

add r3 r3 r2 ; result += b;

sbc r1 r1 1 ; a--;

blt r0 r1 loop ; return for another iteration,

; if necessary

endloop

9

As you have seen from your work with other programming languages, many pro-
grams spend most of their time in loops. If we can cut down the number of in-
structions in the body of a loop, we can significantly reduce the running time of the
program. Here, we have reduced the size of the loop body by one-fourth.

The loop above forms the core of the example program multiply.a41 and provides
a template to use for all while-loops.

b?? r? r? endloop ; do we enter the loop?

loop

... ; loop body

b?? r? r? loop ; another iteration

endloop

Obviously, if we have more than one loop in a program, we have to use more imagi-
native names than loop and endloop.

The for-loop for (a=0; a<b; a++) {...} can be translated into the while-loop
below, and so our technique can accommodate for-loops as well.

a = 0;

while (a < b) {

...

a++;

}

2.5 Conditional Execution

The basic pattern for conditional execution is if-then-else. There are two blocks of
code, and only one is executed. If the condition is true, the computer executes the
then-part and skips over the else-part. If the condition is false, the computer skips
the then-part and executes the else-part. It all can be carried out with two branches
and two labels.

b?? r? r? else ; branch if condition is false

... ; then-part

brs endif ; skip else-part

else

... ; else-part

endif

For a concrete example, we compute the “sign” of a number.

10

if (a < 0)

write(-1);

else if (0 < a)

write(+1);

else

write(0);

Suppose that the value a is in r2. We have the following code. Notice that we
branch to the else-part, so that the branch condition is the negation of the one in
the if-statement.

ble r0 r2 elseif ; first comparison

adc r3 r0 -1 ; place result -1 in r3

sto r0 r3 ; write the value in r3

brs endif ; skip other clauses

elseif

ble r2 r0 else ; second comparison

adc r3 r0 1 ; place result +1 in r3

sto r0 r3 ; write the value in r3

brs endif ; skip other clauses

else

sto r0 r0 ; write the value zero

endif

The example sign.a41 has the full program.

2.6 Arrays and Nested Loops

The loop template from Section 2.4 can be applied inside itself to obtain nested
loops. The Sieve of Eratosthenes, a classical method for listing prime numbers,
provides an example of nested loops. The idea is to make a list of numbers from
2 up to some limit. We make several passes across the list. On each pass, the first
number encountered is a prime. We record that number and then remove it and all
its multiples from the list.

We can implement the sieve in Java or C++ with an array called num. The value
num[i] is zero or one, according to whether or not i is still on the list.

for (i = 2; i <= limit; i++)

num[i] = 0;

11

for (i = 2; i <= limit; i++)

if (num[i] == 0) {

write(i);

for (j = i; j <= limit; j += i)

num[j] = 1;

}

In the CS41B Machine, we can represent the array as a contiguous sequence of words
in memory. If num is the address of the base of the sequence, then the value num[i]

is at address num � 2i. Suppose that i is in r3. If the base address num is a small
value, one that can fit in a byte, then we can put the value num[i] into r1 with just
two instructions.

add r2 r3 r3

loa r1 r2 num

Notice how r2 is used as a temporary register to hold 2i. (How would you get the
value of num[i] if the array num were not stored at a small address?)

The first part of our program reserves memory for i and num. We allocate two bytes
for i and 202 bytes for num, thereby creating slots for the numbers 0 through 100.
(Indices 0 and 1 are not used, but it is less confusing to include them.)

i dat 2 ; i

num dat 202 ; an array indexed 0 through 100;

; indices 0 and 1 are not used

The first loop in the sieve is easy to write. (It is also unnecessary, since the CS41B
Machine initializes memory to zero.) We use r3 for i and r1 for the upper bound
(100, in this case).

adc r3 r0 2 ; i = 2;

adc r1 r0 100 ; limit = 100;

blt r1 r3 enda ; check if done

loopa

add r2 r3 r3 ; get word offset

sto r2 r0 num ; num[i] := 0

adc r3 r3 1 ; i++;

ble r1 r3 loopa ; go back for another round

enda

The body of this loop has four instructions and uses all three data registers. Can you
find a way to reduce the number of instructions to three and use only two registers?

Let us now look carefully at the structure of the second loop.

12

for (i = 2; i <= limit; i++)

if (num[i] == 0) {

write(i);

for (j = i; j <= limit; j += i)

num[j] = 1;

}

Call the outer loop loopb. The body of that loop consists of an if-statement whose
then-part contains another loop, loopc. The structure of the labels is shown below.

loopb

blt r0 r? elsepart ; branch if (num[i] != 0)

loopc

endc

brs endif

elsepart

endif

endb

The first thing to notice is that the else-part is empty, so we need only one of the
labels elsepart and endif, and we can omit the instruction brs endif. The outer
loop has the same structure as loopa above, so we can copy that pattern.

adc r3 r0 2 ; use r3 for i

adc r1 r0 100 ; restore limit = 100;

blt r1 r3 endb ; check if done

loopb

add r2 r3 r3 ; get word offset

loa r2 r2 num ; r2 now contains the value num[i]

blt r0 r2 endif ; branch if (num[i] != 1)

... ; write(i)

loopc

...

endc

loa r3 r0 i ; restore i

adc r1 r0 100 ; restore limit = 100;

13

endif

adc r3 r3 1 ; i++;

ble r3 r1 loopb ; go back for another round

endb

The only remaining tasks are to insert the output instruction and to fill in the body
of loopc. One difficulty is that the body of loopc requires all three registers. We
need j, 2j, and the constant 1. We have to store i elsewhere, and that is why we
reserved space for it at the top of our program.

Because the label i corresponds to a small address, we can use the same short-
cut that we used with num. The label i is simply an “offset” from the address in
register r0. Here is the piece that is missing from the code above.

sto r0 r3 ; write(i);

sto r0 r3 i ; temporarily store i,

; and use r3 for j

blt r1 r3 endc ; check if done

loopc

adc r1 r0 1 ; set r1 to 1

add r2 r3 r3 ; get word offset

sto r2 r1 num ; num[j] = 1;

loa r2 r0 i ; get i back

add r3 r3 r2 ; j += i;

adc r1 r0 100 ; restore limit = 100;

ble r3 r1 loopc ; go back for another round

endc

None of these steps are hard, but the program is intricate. Programming at this level
is a delicate task. All the pieces are assembled in the example program sieve.a41.

2.7 Stacks

Our method for saving and restoring the value of i in the Sieve of Eratosthenes was
ad hoc and difficult to generalize. Most computer systems save temporary values
on a stack. It is a mechanism that can be generalized to support subprogram calls.

The Stack as an Abstract Data Type A stack is an data structure that maintains a
collection of elements. For our purposes, the elements may be taken to be words on

14

the CS41B Machine, but in other contexts, any kind of element could be used.

The name “stack” comes from an analogy with a stack of dishes or cafeteria trays.
Dishes may be placed on the top of the stack or removed from the top of the stack,
but we may not—without disastrous consequence—move dishes that are in the mid-
dle of the stack. All activity occurs at the top of the stack. The object removed is
the one that most recently was added, leading to a discipline that is called LIFO, an
abbreviation for “last-in-first-out.”

A stack is empty when it contains no elements. If a stack is not empty, we may
pop the top element off the stack. The pop operation is considered to be a function
whose value is the element that is removed. In some situations it is convenient to
have a top operation that returns the value of the top element without removing it.
An attempt to pop an element from an empty stack causes an error known as stack
underflow.

Conversely, a push operation places an element on the top of the stack. Usually, an
implementation of a stack will have a bounded capacity, and a push operation that
would cause the capacity to be exceeded is an error known as stack overflow.

As general data structures, stacks can be implemented using arrays or linked lists,
but most processors have some direct hardware assistance for the stacks that sup-
port the execution of subprograms.

The Hardware Stack A stack is at the heart of a running program. A hardware
stack consists of a region of memory reserved for the elements and a designated
register to hold an address. The register has a different name in every architecture;
we will call it sp, for stack pointer.

Paradoxically, most hardware stacks grow from high memory addresses to low, so
that a push operation decreases the stack pointer. A push operation

1. copies the value from a register to mem�sp�, and then

2. decrements sp by the word size (in our case, by 2).

Analogously, a pop operation

1. increments sp, and then

2. copies the value from mem�sp� to a register.

Here, we have adopted the convention that sp is the location just below the top of
the stack. It is the location where the next element is to go. We could have equally
well set things up so that sp pointed directly to the top of the stack. (How?)

15

Stack overflow, in the case of the hardware stack, means that the stack grows be-
yond the region of memory that was reserved for it. There is no direct protection
against corrupting data or programs in adjoining memory locations. Similarly, there
is no protection against stack underflow, in which erroneous values will be returned.
A correct program will prevent underflow by invoking the operations in push-pop
pairs.

One use of stacks is to hold intermediate values in arithmetic calculations. For
example, in computing

�a� b�� �c � d�;

the value a � b is computed and pushed onto the stack. Then c � d is computed,
and the value a� b is popped for multiplication.

Another, similar, use is to temporarily store the value from a register. We could
have used that device in the Sieve of Eratosthenes when we had more variables than
registers.

One cost of using a stack is that the stack pointer cannot be used for any other
purpose. We adopt the convention that r1 is the stack pointer, leaving us with only
two general-purpose registers.

Stack Frames Probably the most important use of the hardware stack is to manage
subprograms. When a subprogram is invoked, there are two agents: the caller of
the subprogram, which is suspended while the subprogram is executing, and the
subprogram itself, the callee. When the callee completes its task, the caller resumes
where it left off.

During the course of its execution, a subprogram may call another subprogram. The
calling mechanism obeys a stack discipline. The active subprogram is on top of
the stack, and all the suspended callers are further down. When a subprogram is
finished, it is popped and the new top-of-stack, its caller, becomes active. The LIFO
stack discipline is exactly what we need to keep track of subprograms.

A stack frame is a block of data on the stack that is used for communication between
the caller and callee. It includes space for the arguments that are passed from the
caller to the callee; the function result, if any, that is passed back from the callee
to the caller; and the address in the caller’s code to which execution should return.
The frame on the top of the stack belongs to the currently-executing subprogram. A
stack frame is also known as an activation record.

There are many variations for maintaining the information in a stack frame. It does
not matter much what decisions one makes, but once the decisions are made, strict
adherence to them is vital. We adopt the following conventions for using registers
and the stack on CS41B.

16

� r1 is the stack pointer. A subprogram call should return it with the same
value. (A rare exception occurs when a subprogram returns more than one
value. In that case, there are additional values on the stack.)

� r2 is used for the return address. The caller cannot expect any data in r2 to
be preserved.

� r3 is used to pass the first argument to the callee and to return a value to the
caller. Again, the caller cannot expect its value to be preserved.

� Any arguments beyond the first are pushed onto the stack by the caller, who
is also responsible for removing them from the stack.

Typically, the caller will save the values in r2 and r3, if necessary, by pushing them
onto the stack. It will then put the first argument into r3 and push any additional
arguments onto the stack. It will then place the address of the subprogram in r2

and execute

cal r2 r2

to invoke the subprogram. One effect of the cal instruction is to save the return
address in r2. The first act of the callee will be to save the return address by pushing
it from r2 onto the stack. When it is finished, the subprogram will put the value to
be returned into r3, pop the return address back into r2, and jump back to the
caller.

subprog

psh r2 ; save the return address

... ; compute, and

... ; leave the result in r3

pop r2 ; restore the return address

jmp r2 ; return

If the subprogram has any local variables, space is allocated for them after the return
address is pushed, and they are discarded just before the return address is popped.

Initializing the Stack A program must reserve an area in memory for the stack,
and its very first act must be to initialize the stack pointer r1. Remember that a
stack grows from high locations toward lower ones, so the base of the stack is at the
high end of the stack region. By convention, we put global data region before the
executable code and the stack area after it.

data

dat ?? ; data area, if required

17

; beginning of executable code

lcw r1 stack ; initial stack pointer

... ; rest of executable code

dat 100 ; stack area, 50 words

stack

end

2.8 Subprograms

The facility to use subprograms is an essential part of any modern programming
language. Subprograms might be called functions, procedures, or subroutines, but
at the hardware level, they all behave in about the same way.

Now that we have a stack, we have the ability to call subprograms. There is, of
course, no reason that the caller and callee have to be different subprograms, and
we illustrate subprogram calls by writing a recursive version of the factorial func-
tion. Following convention, the argument and the result are both passed in r3. If
we forget about the base case of the recursion (only for a moment!), the code is
astonishingly simple.

fact

psh r2 ; save return address

psh r3 ; save argument

sbc r3 r3 1 ; decrement argument

lcw r2 fact ; make recursive call

cal r2 r2 ;

lcw r2 mult ; call mult

cal r2 r2 ; one argument is in r3

; and the other is on

; the stack

pop r0 ; discard saved argument

pop r2 ; restore return address

jmp r2 ; return

Here we are assuming that there is a subprogram mult which does multiplication.
When it is called, one argument to mult—the result of the recursive call—is in r3,
and the other argument is on the top of the stack. When it returns, the result of the
factorial function is already in r3. No movement of data is necessary.

18

Returning to the base case of the factorial function, we must make the result 1
when the argument is less than 1. It is an easy insertion of an if-then-else construc-
tion, and the completed factorial function appears in context in the sample program
factorial.a41.

Notice that stack operations come in push-pop pairs. That discipline is the key
to using a stack. Always follow the template and be sure that your subprogram
balances pushes and pops.

2.9 Digging More Deeply into the Stack

Often, we are interested in a value that is near, but not at, the top of the stack.
We can gain access to such a value using the optional third argument to the loa

instruction.

loa r2 r1 offset

After the return address has been pushed, an offset of 2 would recover the return
address itself, and an offset of 4 would recover the next word down on the stack,
presumably an argument.

The subprogram mult, used in the factorial example, takes two arguments and uses
them to initialize two local variables. It starts and ends like this:

psh r2 ; save the return address

loa r2 r1 4 ; get argument b

psh r3 ; save local a

psh r2 ; save local b

... ; compute, and place the

; result in r3

pop r0 ; discard local b

pop r0 ; discard local a

pop r2 ; restore return address

jmp r2 ; return

When this subprogram has completed, the argument b is on the top of the stack; the
caller is responsible for removing it.

Within the heart of mult, the product is computed using repeated addition, just as
it was in our earlier example. However, we now have only two registers available
because r1 is reserved for the stack. We keep the result in r3, and we alternate the
use of r2 between a and b. Here is the loop.

19

loopm

loa r2 r1 2 ; recover b

add r3 r3 r2 ; product += b;

loa r2 r1 4 ; recover a

sbc r2 r2 1 ; a--;

sto r1 r2 4 ; store a

blt r0 r2 loopm ; go back for another round

The sequence involving the decrement of a is common: put the value in a register,
modify it, and then put it back in memory. We do not have to store b because its
value is not changed. The complete function mult appears in the example program
factorial.a41.

3 The CS41B Instruction Set

Until now, we have been using assembly language instructions and have not worried
about how they are encoded as bits in memory. We now turn to the details of the
encoding.

A machine-level instruction is a word whose bits encode an atomic action of the
machine. An instruction has an operation name and up to three arguments. All
the arguments, except perhaps the last, are registers. The last argument may be a
register or a byte value. The two encoding schemes are shown below. The registers
r0 through r3 are specified with two bits each.

4 2 2 2 6

opcode dest src0 src1 unused

4 2 2 8

opcode dest src0 argument

high-order bits - -! low order bits

The names of the instructions are opcodes. With four bits, we have sixteen opcodes,
which correspond to some of the assembly instructions we have already seen. The
remaining instructions are translated into machine instructions by the assembler.

Table 6 summarizes the instructions of the CS41B Machine. Every instruction except
hlt modifies the instruction counter. An instruction may modify the value in a data
register or one in a memory location, but not both. As is customary, the first register
argument is denoted dest, and the other two are denoted src0 and src1.

For example, the (nonsensical) instruction sequence

20

opcode (hex) abbreviation arguments action

Control Instructions

0 nop --- do nothing

1 hlt --- stop the machine

2 pau --- pause the machine

3 cal RR- dest � ic and ic � src0

Branch Instructions

4 beq RRS if dest � src0, ic�� arg

5 bne RRS if dest 6� src0, ic�� arg

6 blt RRS if dest < src0, ic�� arg

7 bge RRS if dest � src0, ic�� arg

Data Moving Instructions

8 sto RRS mem�dest� arg� � src0

9 loa RRS dest � mem�src0� arg�

a lcl R-U lowbyte�dest� � arg

b lch R-U highbyte�dest� � arg

Arithmetic Instructions

c add RRR dest � src0� src1

d sub RRR dest � src0� src1

e adc RRS dest � src0� arg

f sbc RRS dest � src0� arg

Table 6: The CS41B Machine instruction set. The third argument, when it exists,
may be a register, a signed byte, or an unsigned byte.

21

target

add r3 r2 r2

loa r2 r1 4

blt r3 r0 target

is encoded as

ce80

9904

66fa

Notice that the signed byte argument to the blt instruction is 0xfa or �6, not �4 as
one might expect. That is because the branch is relative to the current instruction
counter, which is the location of the next instruction to be executed. The assembly
language branch instructions take arguments that are relative to the location of the
current instruction, while the machine branch instructions take arguments that are
relative to the current value of the instruction counter. Keep that distinction in mind
if you are ever tempted to give a numerical argument to a branch instruction! One
big advantage of using labels is that the assembler takes care of computing the cor-
rect offset for the machine instruction. Practice translating a few other instruction
sequences by hand.

One important consequence of the instruction format is that the argument to a
branch instruction is stored in eight bits, interpreted as a signed value. That means
that the target of the branch must be between �128 and �127 bytes away from the
current value of the instruction counter. It can be a severe limitation in some cases,
but there are creative ways to work around it.

At the machine level, the byte argument to sto and loa is not optional. The assem-
bler inserts a zero value when necessary.

The remaining assembly language instructions are synthetic instructions. The assem-
bler translates them into one or more machine instructions from Table 6. Here are
the definitions of the synthetic instructions.

jmp dest is represented as cal r0 dest.

brs arg is represented as beq r0 r0 arg. It is the conditional branch that is
always taken.

ble dest src0 arg is represented as bge src0 dest arg.

bgt dest src0 arg is represented as blt src0 dest arg.

psh dest is represented by the sequence sto r1 dest 0; sbc r1 r1 2.

pop dest is represented by the sequence adc r1 r1 2; loa dest r1 0.

mov dest src0 is represented by add dest r0 src0.

22

neg dest src0 is represented by sub dest r0 src0.

lcw dest word is represented by the sequence lcl dest wlow; lch dest

whigh, where wlow and whigh are the low and high bytes, respectively,
of word.

The opcodes for the conditional branch instructions illustrate how the encoding can
be chosen to make instructions easy to decode. The bit pattern for a conditional
branch opcode is 01xy. The value of x specifies the type of test: equal or less-than.
The value of y tells whether the result of the test is taken as-is or is negated.

The format for a CS41B program file is a sequence of lines, each one containing four
hexadecimal characters. The first line is the address in memory where the program
is to be loaded and execution is to start. When loading a program, the machine sets
ic to the value on the first line and then puts the subsequent values into memory
sequentially, starting with the address on the first line.

4 Real Computers

The CS41B Machine contains most of the features of a real computer, at least in
primitive form. In this section, we explore how the CS41B concepts are extended in
real computers.

4.1 Registers and Memory

As in the CS41B Machine, memory in a real computer is indexed by bytes, but the
word size is larger. The 32-bit word is the standard, and 64-bit words are becoming
more common.

A real computer has more registers, seldom less than eight and often 32 or more.
Sometimes, as in the Intel x86 architecture, every register has a special purpose.

4.2 Instructions

The instruction set on a real computer includes, of course, many more arithmetic
operations. There are also more varied and flexible addressing methods for the store
and load operations. There are instructions to manipulate a wider range of data
types, including floating point numbers. Finally, there are specialized instructions
that are used by the operating system; see Section 4.5.

Designing an instruction set requires careful thought. Instructions should be chosen
to give the programmer maximum flexibility and expressiveness. The particular

23

instructions should be the ones most frequently used. They should be grouped
according to form and function for easy decoding by the processor.

The CS41B Machine instruction set is quite uniform: Every instruction is exactly
two bytes long. The first four bits determine the instruction, and there are only
two kinds of instructions, RRR and RRV. (Many instructions disregard some, or all,
of their arguments, however. In those cases, the bits encoding the arguments are
ignored.)

An alternative to fixed-length instructions is a variable-length instruction set. The
Intel x86 instruction set, currently the most popular, contains instructions with
lengths from one byte up to fifteen bytes. An advantage of variable length instruc-
tions is that they make the code stream very compact; few bits are wasted. The most
commonly-used instructions can be made short.

Variable-length instruction sets were chosen in the 1970’s when the x86 processors
were first designed because they increased the speed of the computer. Frequently-
used combinations of instructions (like pop r2; jmp r2 on the CS41B Machine) could
be combined into a single short instruction and executed as a single instruction on
the hardware. Further, programs expressed in variable-length instructions tend to
be more compact—a consideration that was important when memory was expensive.

Later, in the 1980’s, new processors used uniform, fixed-length instructions and
took advantage of the speed at which they could be decoded. The tension between
CISC (complex instruction set computers) and RISC (reduced instruction set comput-
ers) was high, and people argued the superiority of both approaches. The capabil-
ities of today’s processors make arguments about instruction sets moot. Complex
instructions can be quickly decoded and executed, which is probably why we still
use a descendant of the original x86 instruction set.

Figure 1 contains the Sieve of Eratosthenes in Intel x86 assembly language. The
code was generated by a compiler, and the branches are a little different from our
example. Deciphering the code is an interesting exercise. To get you started, we have
annotated the first loop. We will refer back to this code in subsequent sections.

4.3 Conditional Branches

The conditional branch instructions on the CS41B Machine make signed compar-
isons. Unsigned comparisons can be different. For example, 0xffff is less than
zero as a signed word, but not as an unsigned word. There are cases in which we
want to make unsigned comparisons.

One solution would be to emulate the comparisons in software; see Exercise 2. Such
solutions involve complicated case-by-case analyses and would give unacceptable

24

_sieve:
pushl %ebp
movl %esp, %ebp
subl $440, %esp
movl $2, -16(%ebp) ; i = 2;
jmp L2 ; jump to loop test

L3:
movl -16(%ebp), %eax ; eax = i;
movl $0, -416(%ebp,%eax,4) ; num[i] = 0;
leal -16(%ebp), %eax ; eax = address(i);
incl (%eax) ; i++;

L2:
cmpl $100, -16(%ebp) ; compare i and 100
jle L3 ; branch back if i <= 100
movl $2, -16(%ebp)
jmp L5

L6:
movl -16(%ebp), %eax
movl -416(%ebp,%eax,4), %eax
testl %eax, %eax
jne L7
movl -16(%ebp), %eax
movl %eax, (%esp)
call L_write$stub
movl -16(%ebp), %eax
movl %eax, -12(%ebp)
jmp L9

L10:
movl -12(%ebp), %eax
movl $1, -416(%ebp,%eax,4)
movl -16(%ebp), %edx
leal -12(%ebp), %eax
addl %edx, (%eax)

L9:
cmpl $100, -12(%ebp)
jle L10

L7:
leal -16(%ebp), %eax
incl (%eax)

L5:
cmpl $100, -16(%ebp)
jle L6
leave
ret

Figure 1: The Sieve of Eratosthenes in Intel x86 Assembly Language. This function
was generated by the gcc compiler. The array and indices are all local variables.

25

performance on any real computer. Another solution would be to add unsigned
comparison instructions, but that greatly increases the complexity of the instruction
set.

A common solution is to use subtraction and add four one-bit registers, called flags.
The flags are modified on every arithmetic operation, and the conditional branch
instructions examine the flags, not the contents of registers. A branch instruction
like ble dest src0 arg would then, in three steps, compute dest � src0, discard
the result of the computation, and then determine the branch based on the flags.

A flag with the value 0 is said to be clear or “false,” and one with value 1 is set or
“true.”

� The carry flag is set when an addition causes a carry bit to be discarded, or
when a subtraction requires a borrow bit.

� The zero flag is set if the result of the arithmetic operation is zero.

� The sign flag is set if the result, interpreted as a signed value, is negative. The
sign flag is simply the sign bit of the result.

� The overflow flag is set when the result, interpreted as signed, is out of range.
For addition that means that the overflow flag is set when two operands having
the same sign produce a result with a different sign. For subtraction it means
that the operands have different signs and the minuend1 and result also have
different signs.

Combinations of these flags will give all possible comparisons. For example, with
unsigned values, a < b is true when the carry flag is set after computing a� b. With
signed values, a < b is true when the sign flag is different from the overflow flag.
See the course document Logic, Words, and Integers for further specifications.

Look again at Figure 1 and notice the branches. The sequence cmpl; jle corre-
sponds to CS41B’s ble.

4.4 Stack Frames

The top of the stack may move during the execution of a subprogram (to store
intermediate results of a calculation, for example). Most real computers designated
another register, called fp, for frame pointer, to retain the location of the current
stack frame. The addresses of elements in a stack frame are computed using an
offset from the frame pointer. The frame pointer is called the base pointer in some
architectures.

1The minuend is the top number in a subtraction problem. The subtrahend is subtracted from
the minuend.

26

� sp

� fp, saved sp

local n� 1

...

local 0
saved fp

return address
argument m� 1

...

argument 0

6

top of stack

?

high addresses

Figure 2: A typical stack frame for a subprogram call with m arguments and n
local variables. As shown, the stack grows from higher addresses to lower ones.

Here is the sequence of operations that takes place when a subprogram is called:

1. The arguments are pushed onto the stack, one at a time, by the caller.

2. The call is made. Either the call instruction pushes the return address auto-
matically or the callee pushes it from a designated register.

3. The value of fp is pushed by the callee.

4. The value of sp is copied into fp.

5. The top of stack is adjusted to make space for the local variables.

There are many variations on this theme. The order of operations may be slightly
different, there may be a different division of labor between the caller and the callee,
and other values may appear in the frame. The crucial features are that the caller’s
values for fp, sp, and ic are saved (in steps 2, 3, and 4) for restoration later.

As shown in Figure 2, the frame pointer is an address in the middle of the frame. In
our convention, fp is the address of the first local variable. The return address is at
address fp � 4 (assuming two-byte words). The subroutine has complete access to
the arguments, as long as it knows how many there are.

Upon completion of the subprogram, the following steps are executed:

1. The value of fp is copied to sp by the callee, effectively discarding the local
variables.

2. The saved value of fp is restored with a pop by the callee.

3. The return address is popped by the callee, and execution returns to the caller.

27

4. The caller increments sp to discard the arguments.

Again, variations are possible. However the details are carried out, the essential
parts are to restore fp and sp to their values before the call and to set ic so that
the calling program continues on its way.

If the subprogram is a function, it returns its value either in a register or on the stack.
If a value is returned on the stack, space is allocated for it before the arguments
are pushed, so that the returned value is on the top of the stack after caller has
discarded the arguments.

Look, once again, at Figure 1 and notice the beginning and end. The Intel stack
pointer is %esp and the frame pointer is %ebp. The first few lines match our de-
scription exactly. It is not necessary to push the return address because the Intel
call instruction automatically pushes it. The exit code of the function is not as
clear, because all the operations are packed into the complex instructions leave

and ret. It is a very good example of how a complex instruction set can package
frequently-done operations.

4.5 Operating System Support

Just as an assembler makes programming more efficient, an operating system makes
using a computer easier. In this section, we touch on a few services provided by an
operating system and show how those features are supported by the hardware.

Loader One bit of “magic” in our CS41B application is the loader, which reads an
external program file and copies its contents into memory. In the CS41B application,
the loader is an external program; on a real computer, the loader is itself a program.
When a user starts a program, the operating system reserves space for it, the loader
is invoked to copy the file into memory, and then the program is started. When
the program is finished, the operating system is called to reclaim the memory. In a
sense, a program is simply a subprogram of the loader.

One can write a loader for the CS41B Machine; see Exercise 17. It is awkward, how-
ever, to enter a program through CS41B’s only input channel as a sequence of signed
integers.

Memory Management On a real computer, several programs run at the same time.
Each one has the illusion that it has the whole computer to itself. It is the operating
system’s job to parcel out blocks of memory and to keep the programs from inter-
fering with one another. One aspect of the task is virtual memory. Each running
program has its own virtual memory space, as if it occupied the whole computer.

28

There is special hardware that translates virtual addresses into addresses in the ac-
tual memory. It is the operating system’s responsibility to maintain the different
translation tables in a way that each program has its own private region of memory.

A real computer has special registers and a collection of privileged commands that
the operating system uses to manage memory. It would be virtually impossible to
implement memory management on the CS41B Machine.

Multiprogramming Even though it appears that several programs are running on
a real computer, only one can actually be executing at a given instant. (Or, in the
case of multi-core and multi-processor computers, only a few can be executing at
one time.) The illusion of many programs running simultaneously is accomplished
through time-sharing. Each program gets a short amount of time on the processor,
and then is replaced by the next program. The switch between programs happens
many times a second, so that it appears that each program is executing continuously.

The operating system maintains a queue of programs that are ready to run, and it
moves from one to the next sequentially. The “trigger” to shift from one program
to another is a timer tick. The timer is an external device that sends a signal, an
interrupt, to the processor at fixed intervals. Typically, a tick occurs a few hundred
times a second.

The processor must support interrupts by having a few special registers for use by
the operating system only. When an interrupt occurs, the processor replaces the
user program’s stack pointer with another register which serves as the operating
system’s stack pointer. A program in the operating system is then given control. It
saves the state of the currently-executing program—including all the registers, flags,
and virtual memory translation data. It then restores the state of another program
and allows it to resume execution.

The processor has two states: user state in which ordinary programs execute and
supervisor state in which the operating system executes. In supervisor state, the
operating system has access to the special registers and instructions to manage
memory and programs. Obviously, it would be very difficult to add interrupts and a
supervisor state to the CS41B Machine.

Input and Output Real computers have many different channels to get data in and
out of a computer. They include displays, keyboards, mice, tapes, disk drives, and
network interfaces. Memory mapping, which we have used in a primitive way with
mem�0�, is the most common method for communicating with these devices.

The idea is that each device is assigned a set of addresses, and the computer com-
municates with the device by loading and storing to those addresses. Most pro-
grammers will never actually use those addresses, because there is a set of routines,

29

called a driver, that hides the low-level details. High level programming languages
provide a collection of facilities for communicating with the input and output sys-
tem.

A computer does not know when input has arrived, so a device (a network interface,
for example) sends an interrupt when it needs attention. Just as in the case of a timer
tick, the operating system takes over, transfers data from the device to memory, and
informs the relevant program that it has input. The “relevant program” may actually
be another part of the operating system. For example, when a new electronic mail
message arrives, the operating system passes it to the system-wide mail manager,
which in turn deposits it in the recipient’s mailbox.

A The CS41B Application

We will work with a Java application that assembles and runs CS41B programs. The
code for the application is contained in a Java jar file, found at /common/cs/cs052/

cs41b/cs41b.jar. In the laboratories, you may start it by double clicking on the
jar file or by executing the command /common/cs/cs052/bin/cs41b in a terminal
window. You may also download the jar file from the course Resources page to your
own computer and execute it there.

A.1 File Names

The application uses the following extensions for files:

.a41 a source program in assembly language

.i41 the intermediate file

.m41 the object program, executable by the CS41B Machine

The intermediate files is temporary and should be present during the assembly pro-
cess.

The program expects to be able to write to the directory in which it finds the files. If
you are running example programs, first copy them to a location in your own home
directory.

A.2 The Visual Application

On most platforms, you can start the application by clicking on the jar file’s icon.

The exact appearance of the window will differ according to platform, but it will be
organized as shown in Figure 3. There are two views of memory: On the left is the

30

Figure 3: The appearance of the CS41B Machine.

Data View in which the memory values are interpreted as data, and on the right is
the Instruction View in which the memory values (all of them!) are interpreted as
instructions. Adjacent to the Instruction View is a panel that shows the registers
and their current values. The large panel in the center is where the input and output
takes place.

The buttons have been designed to work in an intuitive manner. The Load button
opens a file selector window from which you can choose the file to run. The Reset
button takes the machine back to the state at which the program was originally
loaded.

The Load and Reset buttons are programmed to call the assembler aggressively. A
program will be assembled prior to loading if the source file exists and the object
file either does not exist or it is older than the source file. An object file will be
reloaded if it is newer than the previously loaded file.

The four buttons at the bottom control the execution of the program. The Run
button causes the program to run at full speed. The Trot button slows the program
to about two instructions per second. The Step button allows you to step through
the program one instruction at a time. The Stop button halts execution temporarily.
You may shift between execution modes at any time.

Executing a pau instruction in the visual application has the same effect as press-
ing the Stop button. You can debug a portion of your program by inserting a pau

instruction and then examining the registers or stepping through the code.

If the machine has halted normally, pressing the Run, Trot, or Step button will reset
the machine and start the program anew. If the machine is in an error state, it must
be reset explicitly by pressing the Reset button.

31

Exit the application by closing the window.

A.3 Command Line Invocation

By invoking the program from the command line, one can obtain a wider range of
behaviors. The basic command is

java -jar <path-to-jar-file> <arguments>

The path is the location of the file cs41b.jar. Examples of paths are ~/cs052/

cs41b.jar and /common/cs/cs052/cs41b/cs41b.jar.

Assembler The argument for the stand-alone assembler is -a <filename>. The
named file must be a CS41B source file with the extension .a41. The action is to
assemble the file and produce the object file with the same name and extension
.m41. Example:

java -jar <path-to-jar-file> -a sieve.a41

Simulator The argument for the stand-alone simulator is -r <filename>. The
named file must be a CS41B object file with the extension .m41. The action is to run
the program in the file. One can optionally give a specification for the machine’s
memory size, -m <memory-size>. The memory size is specified in bytes ranging
from 64 to 216 � 65; 536; the default size is 512. Example:

java -jar <path-to-jar-file> -r sieve.m41 -m 256

Executing the the pau instruction in the simulator is the same as a nop.

Visual Application One can also start the visual application from the command
line, with the advantage of optional arguments that control the memory size and trot
speed. The optional specifications are -m <memory-size>, as described above, and
-t <trot-speed>. The trot speed is specified in instructions per minute, ranging
from 6 to 60; 000. The default speed is 120, two instructions per second. Example:

java -jar <path-to-jar-file> -m 64 -t 3000

At this time, the command line is the only way to specify memory size and trot
speed.

32

A.4 Error Messages

Here is a list of error messages generated by the application. Most of them corre-
spond to errors found by the assembler, before the program runs.

Illegal character The assembler found a character that is not in alphabet of assem-
bly language. Use only letters, plus, minus, underscore and semicolon.

Illegal label A label must begin in the first column and start with a letter.

Illegal opcode The assembler found a string that is not one of the accepted opcodes.
Check your spelling.

Data in executable block A dat directive may not appear between instructions; see
page 8.

No end directive found Your file must conclude with end.

No executable code The assembler found no instructions to execute.

Wrong number of arguments The assembler encountered an instruction with too
many, or two few, arguments.

Incorrect arguments The assembler found an instruction with the wrong type of
arguments.

Byte value out of range The numeric argument to instructions like adc and loa
must fit into a single byte.

Byte offset out of range for label A branch, when taken, adds an eight-bit signed
quantity to the IC. This error is telling you that the target is too far away from
the branch instruction. See page 22.

Byte value out of range for label It is unlikely that you will use a label for the nu-
meric argument to instructions like adc or loa, but when you do, it must be in
the range of an eight-bit unsigned quantity.

Duplicate label You have declared the same label twice in your program.

Label not found You have used a label in an instruction but have not declared it.
The label does not refer to a location in the program.

File not found A file with the name you specified and the extension .a41 could not
be located by the assembler.

Another, smaller, class of errors are those encountered at runtime.

Input error The user has typed input that is not a number or is out of range for a
sixteen-bit signed quantity.

IC out of range The instruction counter is referring to a location that is not in the
machine’s memory.

Address out of bounds The machine was asked to load from, or store to, an address
that is not in the machine’s memory.

File not found A file with the name you specified and the extension .m41 could not
be located by the computer.

33

There are a few error messages that describe internal inconsistencies in either the
assembler or the runtime system. It is unlikely that you will see them, but please
report them if you do.

Cannot happen

Garbled intermediate file

Illegal register index

A.5 Defects and Improvements

Please report errors and unexpected behaviors. Suggestions for improvement are
also welcome. Here are some proposed enhancements; let us know if you think they
are worthwhile.

� Add a way to set the memory size from within the application.

� Add a way to adjust the trot speed from within the application. It could be a
simple way to change the trot speed, or it could be a single “speed control”
slider that replaces the Run, Trot, and Step buttons.

� Add a Stack View of memory. It would track the top of the stack, just as the
Instruction View tracks the instruction counter. It could be an additional panel,
or an option to the Data View.

� Add a resettable step counter.

� Add a “step backwards” facility. It would require extensive programming.

A.6 Legal Stuff

The software and its documentation is copyright © 2009–2011, Everett L. Bull, Jr.
All rights reserved.

34

B Sample Programs

Here is a complete listing of all the sample programs derived in the text. The pro-
grams are also available in the source directory /common/cs/cs052/cs41b.

B.1 Subtract

;
; subtract.a41
;
; A simple CS41B program that subtracts
; two numbers.
;
; Rett Bull
; Pomona College
; July 17, 2009
;

loa r2 r0 ; get first value
loa r3 r0 ; get second value
sub r2 r2 r3 ; subtract them
sto r0 r2 ; print result
hlt ; quit
end

35

B.2 Sign

;
; sign.a41
;
; A CS41B program that illustrates conditional
; execution by determining the sign (-1, 0, or +1)
; of an integer.
;
; Rett Bull
; Pomona College
; August 7, 2009
;
;
; if (a < 0)
; write(-1);
; else if (0 < a)
; write(1);
; else
; write(0);
;
;

loa r1 r0 0 ; get a value for a

ble r0 r1 elseif ; first comparison
adc r3 r0 -1 ; place result -1 in r3
brs endif ; skip other clauses

elseif
ble r1 r0 else ; second comparison
adc r3 r0 1 ; place result +1 in r3
brs endif ; skip other clauses

else
add r3 r0 r0 ; place result 0 in r3

endif
sto r0 r3 0 ; write the value in r3
hlt ; halt
end

36

B.3 Multiply

;
; multiply.a41
;
; A CS41B program that illustrates a loop by
; using iterated addition to multiply two numbers.
;
; Rett Bull
; Pomona College
; August 7, 2009
;
;
; result = 0;
; while (0 < a) {
; result += b;
; a--;
; }
; write(result);
;
;

loa r1 r0 0 ; get a value for a
loa r2 r0 0 ; get a value for b
add r3 r0 r0 ; result = 0;

ble r1 r0 endloop ; test if a <= 0
loop

add r3 r3 r2 ; result += b;
sbc r1 r1 1 ; a--;
blt r0 r1 loop ; return for another iteration

endloop
sto r0 r3 0 ; write the value of product
hlt ; halt
end

37

B.4 Sieve of Eratosthenes

;
; sieve.a41
;
; A CS41B program that executes the Sieve of Eratosthenes
; to illustrate arrays, conditional execution, and nested
; loops.
;
; Rett Bull
; Pomona College
; Originally written for CS41A in the Fall of 1989
; Adapted to CS41B on July 28, 2009
; August 7, 2009
;
;
; for (i = 2; i <= 100; i++)
; num[i] = 0;
; for (i = 2; i <= 100; i++)
; if (num[i] == 0) {
; write(i);
; j = i;
; while (j <= 100) {
; num[j] = 1;
; j += i;
; }
; }
;
; We use all three general registers; there is no
; stack.
;
;

;
; Data area: We set aside a location to store i and a sequence
; of words for the array num.
;
i dat 2 ; i

; indices 0 and 1 are not used
num dat 202 ; an array indexed 0 through 100;

38

;
; First loop: It is actually unnecessary because memory is
; already initialized to zeroes
;
; We use the fact that num is a small address, and use it as an
; offset to the sto instruction. If num were not a small address,
; we would have to load it into a register.
;

adc r3 r0 2 ; i = 2;
adc r1 r0 100 ; limit = 100;

blt r1 r3 enda ; check if done
loopa

add r2 r3 r3 ; get word offset
sto r2 r0 num ; num[i] := 0
adc r3 r3 1 ; i++;
ble r1 r3 loopa ; go back for another round

enda

39

;
; Second (nested) loops: In the inner loop, we have more
; quantities than registers. We have to store i temporarily
; and reload the constants when they are needed.
;
; The code is "semi-optimized" in the sense that we have
; eliminated redundant labels and branches. For clarity,
; we retain the instructions that restore the constant
; value 100 into r1; only one of the three instances of
; that instruction is necessary.
;

adc r3 r0 2 ; use r3 for i
adc r1 r0 100 ; restore limit = 100;

blt r1 r3 endb ; check if done
loopb

add r2 r3 r3 ; get word offset
loa r2 r2 num ; r2 now contains the value num[i]
blt r0 r2 endif ; branch if (num[i] != 1)

sto r0 r3 ; write(i);
sto r0 r3 i ; temporarily store i,

; and use r3 for j

blt r1 r3 endc ; check if done

loopc
adc r1 r0 1 ; set r1 to 1
add r2 r3 r3 ; get word offset
sto r2 r1 num ; num[j] = 1;
loa r2 r0 i ; get i back
add r3 r3 r2 ; j += i;
adc r1 r0 100 ; restore limit = 100;
ble r3 r1 loopc ; go back for another round

endc
loa r3 r0 i ; restore i
adc r1 r0 100 ; restore limit = 100;

endif
adc r3 r3 1 ; i++;
ble r3 r1 loopb ; go back for another round

endb
hlt ; we’re done!
end ;

40

B.5 Factorial

;
; factorial.a41
;
; A CS41B program that computes factorials. It
; illustrates subprogram calls and the use of the
; stack for local variables.
;
; Rett Bull
; Pomona College
; August 7, 2009
;
; int factorial(int x) {
; if (x <= 0)
; return 1;
; else
; return mult(factorial(x-1), x);
; }
;
; int mult(int a, int b) {
; int product = 0;
; if (a < 0) {
; a = -a;
; b = -b;
; }
; while (0 < a) {
; product += b;
; a--;
; }
; return product;
; }
;
; We adopt the CS41B conventions for the use of
; the stack and registers.
;
;

41

;
; main routine: establish the stack, then read
; and write.
;

lcw r1 stack ; set up stack
loa r3 r0 ; get variable

lcw r2 fact ; call fact
cal r2 r2 ;

sto r0 r3 ; write result,
hlt ; and halt

;
; fact subprogram: One argument, in r3.
;
fact

psh r2 ; save return address
blt r0 r3 recursion ;

adc r3 r0 1 ; base case; result is 1
brs done ;

recursion
psh r3 ; save argument
sbc r3 r3 1 ; decrement argument

lcw r2 fact ; make recursive call
cal r2 r2 ;

lcw r2 mult ; call mult
cal r2 r2 ; one argument is in r3

; and the other is on
; the stack

pop r0 ; discard saved argument
; result is already in r3

done
pop r2 ; restore return address
jmp r2 ; return

42

;
; mult subprogram: The incoming arguments are a (in
; r3) and b (on the stack). We use copies of them as
; local variables on the stack.
;
mult

psh r2 ; save return address
loa r2 r1 4 ; get b

ble r0 r3 notneg ; adjust signs, if necessary
neg r3 r3 ;
neg r2 r2 ;

notneg
psh r3 ; save a
psh r2 ; save b
adc r3 r0 0 ; initialize product

loa r2 r1 4 ; recover a
ble r2 r0 endm ; test if done

loopm
loa r2 r1 2 ; recover b
add r3 r3 r2 ; product += b;
loa r2 r1 4 ; recover a
sbc r2 r2 1 ; a--;
sto r1 r2 4 ; store a
blt r0 r2 loopm ; go back for another round

endm
pop r0 ; discard local b
pop r0 ; discard local a
pop r2 ; restore return address
jmp r2 ; return

;
; stack area: 50 words
;

dat 100
stack

end

43

C Historical Note

The CS41 machines and the assignments surrounding them were inspired in the
1980’s by Professor Richard Lorentz, then at Harvey Mudd College. In its original
incarnation, the computer had only one data register and used decimal numbers.

The CS41A machine was designed in 1989 to look a little more like a real computer
and to illustrate more concepts. In particular, it introduced an explicit instruction
encoding. The original intention was to have a sequence of machines, CS41B, CS41C,
and so on, of increasing complexity. It quickly became evident, however, that the
CS41A architecture was not an adequate platform for expansion. Stack operations
were to be an enhancement of the CS41B Machine, but maintaining a stack with only
one register was too cumbersome. It became clear that CS41B would have to be an
entirely new machine and could not be an extension of CS41A.

The CS41A machine stabilized in 1989 and was not changed thereafter. It was used
until 1997, when it was abandoned in favor of another simulator, called ISC, that
offered more registers and more flexibility.

In the spring of 2009, alumni from the late 1990’s returned to campus and reported
that they had been amusing themselves rewriting CS41A assignments from a decade
earlier. Their report prompted another look at CS41A and its window-based simu-
lator. The simulator was a real advantage, and in the summer of 2009 the CS41B
Machine was designed. As expected, it has multiple data registers and the facilities
for calling subprograms. The simulator was written and the examples and assign-
ments were translated into the new instruction set.

Even though course numbers have changed over the years, we have not changed the
name. The CS41B Machine honors those students who labored with CS41A in the
early years of Computer Science at Pomona College.

D Exercises

1. The sample program multiply.a41 works only when the first number is non-
negative. Modify it to handle negative values.

2. A “missing” instruction in the CS41B Machine is blu, branch on unsigned less-
than. Write a sequence of instructions to simulate it.

3. Write a sequence of CS41B instructions that interchanges the values in two reg-
isters without changing the data in any other register or memory location. Hint:
Consider the following sequence of assignment statements.

44

x = x + y;

y = x - y;

x = x - y;

4. Euclid’s algorithm for computing the greatest common divisor of two integers is
expressed in the following program. Write a CS41B subprogram to simulates it.

int gcd(int a, int b) {

a = |a|;

b = |b|;

while (0 < a && 0 < b)

if (a < b)

b = b - a;

else

a = a - b;

return (a == 0) ? b : a;

}

5. Here is a recursive version of Euclid’s algorithm, in which we assume that the
arguments are not negative. Write a CS41B subprogram to simulate it.

int gcd(int a, int b) {

if (a == 0)

return b;

else if (a < b)

return gcd(b, a);

else

return gcd(a - b, b);

}

6. The sequence of Fibonacci numbers is defined recursively: f0 � f1 � 1 and
fn � fn�1 � fn�2. Write a CS41B subprogram to compute elements of the Fibonacci
sequence recursively, by following the definition precisely.

7. Write a CS41B subprogram to compute elements of the Fibonacci sequence itera-
tively, as illustrated in the function below.

int fib(int n) {

int ultimate = 1;

int penultimate = 1;

45

for (int j = 1; j < n; j++) {

ultimate = ultimate + penultimate;

penultimate = ultimate - penultimate;

}

return ultimate;

}

8. The Takeuchi function was designed to test the speed at which computer systems
compute recursive functions. It makes many calls, but the numbers do not get very
large.

tak�x; y; z� �

8>>>><>>>>:
y if x � y , and
tak�tak�x � 1; y; z�;

tak�y � 1; z; x�;
tak�z � 1; x; y�� otherwise

Write a CS41B subprogram that computes the Takeuchi function.

9. The following code shifts the bits of orig, one at a time, into copy.

int copy = 0;

for (int j = 16; 0 < j; j--) {

copy = copy << 1;

if (orig < 0) // if (sign bit == 1)

copy++;

orig = orig << 1;

}

Note that the one-bit left shift is the equivalent of doubling a number. It can be car-
ried out by a CS41B instruction like add r3 r3 r3, and so the code can be expressed
in a CS41B program. Use a variation of this idea to write a CS41B subprogram that
carries out an arithmetic right shift. In other words, write a subprogram that takes
a number n and returns n=2.

10. The Collatz function is defined on positive integers by the equation

collatz�n� �

8>><>>:
1 if n � 1,
collatz�n=2� if n is even, and
collatz�3n� 1� otherwise.

The Collatz function is interesting to mathematicians because it is not known if
the function is defined on all the positive integers. Write a CS41B subprogram that
computes the Collatz function. Have your function return zero if the argument is
not positive. (Suggestion: Use a modification of the subprogram from Exercise 9
that returns n=2 in r3 and n % 2 on the stack.)

46

11. Write a short C or C++ program that explores its own stack. See if you can locate
the arguments, frame pointer, and return address. (Hint: Get an approximate value
of the frame pointer by using the & operator to find the address of a local variable.)

12. The CS41B instruction set, as described in Table 6, is not as compact as it could
be. Here are three suggestions for replacing machine instructions with synthetic
assembly language instructions. For each one, determine if the substitution is an
exact match for the original instruction. If it is not, explain how the instructions
are different and whether or not you think the synthetic instruction is an “adequate
substitute.”

i. Replace nop arg with bne r0 r0 arg.

ii. Replace lcl dest arg with adc dest r0 arg.

iii. Replace sbc dest src0 argwith adc dest src0 (-arg), where the negation is
computed by the assembler.

13. Write a CS41B program that prints its own sequence of machine instructions.
The result will appear in the machine’s output as a sequence of words expressed as
signed integers.

14. Write a CS41B subprogram mulbytes that takes two byte arguments, one in
r3 and one on the stack, multiplies them, and returns the result in r3. (By byte
argument, we mean a word whose upper byte is zero. Treat the bytes as unsigned
values.)

15. Using the result of the previous exercise, write a subprogram mulwords that
takes two full-word (unsigned) arguments, multiplies them, and returns the product.
The product will be two words wide; return the lower word in r3 and the upper word
on the stack.

16. Use the result of the previous exercise to write a subprogram that does signed
multiplication.

17. Write a CS41B program that behaves as a loader: it receives a program as a se-
quence of signed integers from the machine’s input, places the program in memory,
executes it, and then returns for another program. (We must redefine “program” for
this exercise. A program to be loaded and executed is a subprogram called by the

47

loader. After setting up its stack, the program should push the return address in
r2. On completion, instead of executing hlt, it should pop the return address and
jump to it. Also, the loader must be told when to stop reading a program from the
input. We can assume that a program contains no nop instructions, so that a zero
word signals the end-of-input.)

18. Design a variable-length instruction set with the same capabilities as the CS41B
Machine. Try to minimize the number of unused bits.

48

E Assembly Language Quick Reference

abbreviation arguments action

Register Instructions

mov RR- dest � src0

neg RR- dest � �src0

add RRR dest � src0� src1

sub RRR dest � src0� src1

adc RRS dest � src0� arg

sbc RRS dest � src0� arg

lcw R-W dest � arg

lcl R-U lowbyte�dest� � arg

lch R-U highbyte�dest� � arg

Memory Instructions

sto RR[S] mem�dest� arg� � src0

loa RR[S] dest � mem�src0� arg�
psh R-- push the value in dest

pop R-- pop the top of stack into dest

Control and Branch Instructions

nop --- do nothing

hlt --- stop the machine

pau --- pause the machine

jmp R-- ic � dest

cal RR- dest � ic and ic � src0

brs --S ic � loc� arg

beq RRS if dest � src0, ic � loc� arg

bne RRS if dest 6� src0, ic � loc� arg

blt RRS if dest < src0, ic � loc� arg

ble RRS if dest � src0, ic � loc� arg

bgt RRS if dest > src0, ic � loc� arg

bge RRS if dest � src0, ic � loc� arg

49

	1 The Machine
	2 Assembly Language and Programs
	3 The CS41B Instruction Set
	4 Real Computers
	A The CS41B Application
	B Sample Programs
	C Historical Note
	D Exercises
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	E Assembly Language Quick Reference

