

### Admin

Assignment 6 How'd it go? Which option/extension did you pick?

MT lab

Assignment 7 Out on Thursday Due 10/21 (next Friday)

Quiz #3 next Tuesday

### Final project

- Your project should relate to something involving NLP
- 2. Your project must include a solid experimental evaluation
- Your project should be in a pair or group of three. If you'd like to do it solo or in a group of four, please come talk to me.

# Final project

| date  | time     | description                        |
|-------|----------|------------------------------------|
| 11/18 | in-class | Project proposal presentation      |
| 11/20 | 11:59pm  | Project proposal write-up          |
| 12/2  | 2:45pm   | Status report                      |
| 12/10 | 5pm      | Paper draft                        |
| 12/16 | 2pm      | Final paper, code and presentation |

Read the final project handout ASAP!

Start forming groups and thinking about what you want to do



# Final project ideas

- spelling correction
- part of speech tagger
- text chunker
- dialogue generation
- pronoun resolution
- compare word similarity measures (more than the ones we looked at)
- word sense disambiguation
- machine translation
- information retrieval
- information extraction
- question answering
- summarization
- speech recognition

EM

Anybody notice anything at Thursday's colloquium (related to this class)?

# The mind-reading game

How good are you at guessing random numbers?

Repeat 100 times: Computer guesses whether you'll type 0/1 You type 0 or 1

http://seed.ucsd.edu/~mindreader/ [written by Y. Freund and R. Schapire]





# Machine Learning is...

Machine learning, a branch of artificial intelligence, concerns the construction and study of systems that can learn from data.









# Why machine learning?

Lot's of data

Hand-written rules just don't do it

Performance is much better than what people can do

#### Why not just study machine learning?

- Domain knowledge/expertise is still very important
- What types of features to use
- What models are important





Be able to laugh at these signs







5







6









# Regression applications

How many clicks will a particular website, ad, etc. get?

Predict the readability level of a document

Predict pause between spoken sentences?

 $\operatorname{Car}/\operatorname{plane}$  navigation: angle of the steering wheel, acceleration,  $\ldots$ 

Temporal trends: weather over time

•••



# NLP Ranking Applications

reranking N-best output lists (e.g. parsing, machine translation,  $\ldots)$ 

User preference, e.g. Netflix "My List" -- movie queue ranking

#### iTunes

flight search (search in general)

•••







| left, right, straight, left, left, left, straight         | GOOD |
|-----------------------------------------------------------|------|
| left, straight, straight, left, right, straight, straight | BAD  |
| left, right, straight, left, left, left, straight         | 18.5 |
| left, straight, straight, left, right, straight, straight | -3   |















| Text: raw | data      |  |
|-----------|-----------|--|
| Raw data  | Features? |  |
|           |           |  |
|           |           |  |
|           |           |  |
|           |           |  |
|           |           |  |
|           |           |  |
|           |           |  |









Features are very important, but we're going to focus







| Classification                | revisite | d                                  |
|-------------------------------|----------|------------------------------------|
| Training data                 |          | Test set                           |
| examples                      | label    |                                    |
| red, round, leaf, 3oz,        | apple    |                                    |
| green, round, no leaf, 4oz,   | apple    | red, round, no leaf, 4oz, <b>?</b> |
| yellow, curved, no leaf, 4oz, | banana   |                                    |
| green, curved, no leaf, 5oz,  | banana   |                                    |
|                               |          |                                    |















15



















3. How do we deal with overfitting (i.e. smoothing)?

### Basic steps for probabilistic modeling

#### Probabilistic models

Step 1: pick a model

Step 2: figure out how to estimate the probabilities for the model

Step 3 (optional): deal with overfitting

### Which model do we use, i.e. how do we calculate p(feature, label)?

How do train the model, i.e. how to we we estimate the probabilities for the model?

How do we deal with overfitting?





# Some maths

 $p(features, label) = p(x_1, x_2, ..., x_m, y)$ 

 $= p(y)p(x_1, x_2, ..., x_m \mid y)$ 

What rule?



| $p(features, label) = p(y) \prod_{j=1}^{m} p(x_i   y, x_1,, x_{i-1})$<br>So, far we have made NO assumptions about the data                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                    |
| $p(x_m   y, x_1, x_2,, x_{m-1})$                                                                                                                   |
| How many entries would the probability distribution table<br>have if we tried to represent all possible values and we<br>had 7000 binary features? |
|                                                                                                                                                    |

| Full di | stril      | outi                  | on                        | tab | les   |      |       |  |
|---------|------------|-----------------------|---------------------------|-----|-------|------|-------|--|
|         | <b>x</b> 1 | <b>x</b> <sub>2</sub> | x <sub>3</sub>            |     | у     | р()  |       |  |
|         | 0          | 0                     | 0                         |     | 0     | *    |       |  |
|         | 0          | 0                     | 0                         |     | 1     | *    |       |  |
|         | 1          | 0                     | 0                         |     | 0     | *    |       |  |
|         | 1          | 0                     | 0                         |     | 1     | *    |       |  |
|         | 0          | 1                     | 0                         |     | 0     | *    |       |  |
|         | 0          | 1                     | 0                         |     | 1     | *    |       |  |
|         |            |                       |                           |     |       |      |       |  |
|         | ÷          |                       | comb<br>2 <sup>7000</sup> |     | on of | feat | ures! |  |

| 1696755662202026466665085478377095191112430363743256235982084151527023162702352987080237879                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0004651996019099530984538652557892546513204107022110253564658647431585227076599373340842842                                                                                                  |
| 24200122818782600729310826170431944842663920777841250999968601694360066600112098175792966787                                                                                                 |
| 2625523770065529475725667805580929384462721864021610886260081609713287474920435208740110186<br>262522375017246052311293955235059054544214554772509509096507889478094683592939574112569473436 |
|                                                                                                                                                                                              |
| 1215296848474344406741204174020887540371869421701550220735398381224299258743537536161041593                                                                                                  |
| 19455/666561/01/909041/259/025336526662682021808493892812699/095285/08906963/55/54143448/608<br>18369941993802415197514510125127043829087280919538476302857811854024099958895964192277601254 |
| 1836994199380241519751451012512704382908728091953847630285781185402409995889596419227760125<br>14911562403499947144160905730842429313962119953679373012944795600248333570738998392029910325  |
| 1491156240349994/144160905/306424293139621199536/93/3012944/956002463335/0/3699639202991032<br>1598038953069042980174009801732521069130797124201696339723021835300758978451952584855371088   |
| 2563173700074380516741118913461750148452176798429678284228737312742212022517597535994839257                                                                                                  |
| 2031/3/000/4360510/41116913461/301464321/6/964296/6264226/3/312/42212202251/39/53599463925/<br>98779077063553347902449354353866605125910795672914312162977887848185522928196541766009803989  |
| 01681047403842157435158026038115106828640678973048382922034604277575550737765625475072021                                                                                                    |
| 226348768570962126107476270520304948800720897859368904706342854853166866565732717466065814                                                                                                   |
| 06648495080127617546145721617695575199211750751406777510449578590822558547771447242334900                                                                                                    |
| 026321760892113552561241194538702680299044001838585057671936968975936612135688883868002384                                                                                                   |
| 25673807775018914703049621509969838539752071549396339237202875920415172949370790977853625108                                                                                                 |
| 0928396048072379548870695466216880446521124930762900919907177423550391351174415329737479300                                                                                                  |
| 258305188841353347984641136800049994037372456003542881123263282186611310645507728992299644                                                                                                   |
| 6018580839820741704606832124388152026099584696588161375826382921029547343888832163627122302                                                                                                  |
| 2297953848683554835357106034077891774170263636562027269554375177807413134551018100094688094                                                                                                  |
| 112205738033537112463295891623708958047622459509182530163690923624067141164433165615982805                                                                                                   |
| 0783439888562390892028440902553829376                                                                                                                                                        |
|                                                                                                                                                                                              |

| 0 |   |   | ••• | y | p() |
|---|---|---|-----|---|-----|
| • | 0 | 0 |     | 0 | *   |
| 0 | 0 | 0 |     | 1 | *   |
| 1 | 0 | 0 |     | 0 | *   |
| 1 | 0 | 0 |     | 1 | *   |
| 0 | 1 | 0 |     | 0 | *   |
| 0 | 1 | 0 |     | 1 | *   |
|   |   |   |     |   |     |







Naïve Bayes assumption

 $p(x_i | y, x_1, x_2, ..., x_{i-1}) = p(x_i | y)$ 

For most applications, this is not true!

For example, the fact that "San" occurs will probably make it *more likely* that "Francisco" occurs

However, this is often a reasonable approximation:

 $p(x_i | y, x_1, x_2, ..., x_{i-1}) \approx p(x_i | y)$