ADVANCED PERCEPTRON LEARNING

David Kauchak CS 451 – Fall 2013 Admin

Assignment 2 contest 영 due Sunday night!

Linear models

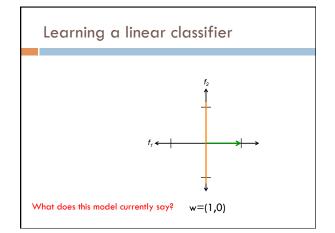
A linear model in *n*-dimensional space (i.e. n features) is define by n+1 weights:

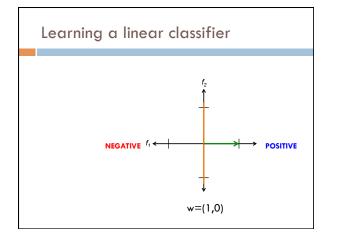
In two dimensions, a line: $0 = w_1 f_1 + w_2 f_2 + b \qquad (\text{where } \mathsf{b} = -\mathsf{a})$

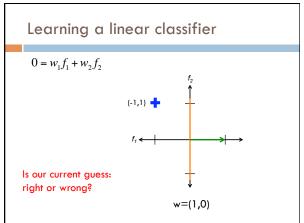
In three dimensions, a plane: $0 = w_1 f_1 + w_2 f_2 + w_3 f_3 + b$

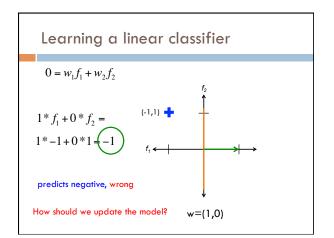
In *n*-dimensions, a hyperplane

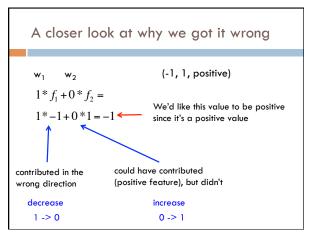
$$0 = b + \sum_{i=1}^{n} w_i f_i$$





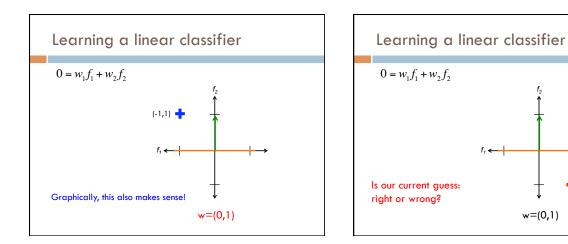


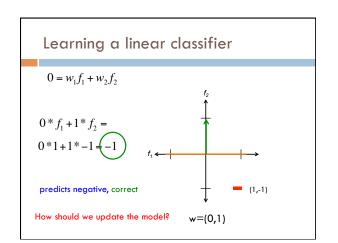


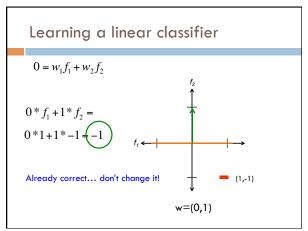


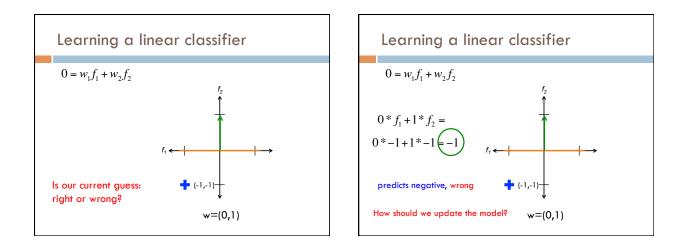
(1,-1)

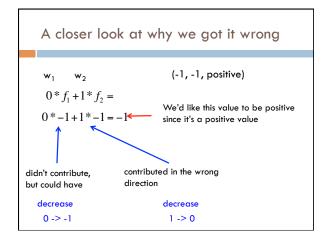
w=(0,1)

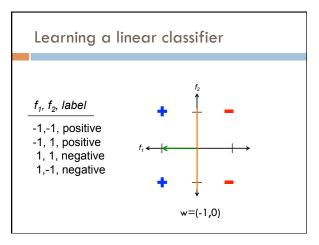












Perceptron learning algorithm

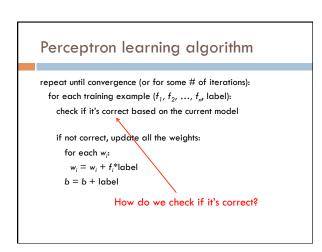
repeat until convergence (or for some # of iterations): for each training example ($f_1, f_2, ..., f_n$ label): check if it's correct based on the current model

- if not correct, update all the weights: $W_i f_i$
- if label positive and feature positive: $V_i J_i$
- increase weight (increase weight = predict more positive) if label positive and feature negative:
- decrease weight (decrease weight = predict more positive) if label negative and feature positive:
- decrease weight (decrease weight = predict more negative) if label negative and negative weight:
- increase weight (increase weight = predict more negative)

A trick...

	label * f _i
label positive and feature positive:	1*1=1
increase weight (increase weight = predict more positive)	
label positive and feature negative:	1*-1=-1
decrease weight (decrease weight = predict more positive)	
label negative and feature positive:	-1*1=-1
decrease weight (decrease weight = predict more negative)	
label negative and negative weight:	-1*-1=1
ncrease weight (increase weight = predict more negative)	

A trick	
Let positive label = 1 and negative label = -1	
-	label * f _i
if label positive and feature positive:	1*1=1
increase weight (increase weight = predict more positive)	
if label positive and feature negative:	1*-1=-1
decrease weight (decrease weight = predict more positive)	
if label negative and feature positive:	-1*1=-1
decrease weight (decrease weight = predict more negative)	
if label negative and negative weight:	-1*-1=1
increase weight (increase weight = predict more negative)	



Perceptron learning algorithm

repeat until convergence (or for some # of iterations): for each training example ($f_1, f_2, ..., f_n$, label): $prediction = b + \sum_{i=1}^{n} w_i f_i$

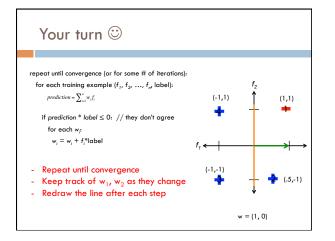
if prediction * label \leq 0: // they don't agree for each w_i: $w_i = w_i + f_i^*$ |abel b = b + |abe|

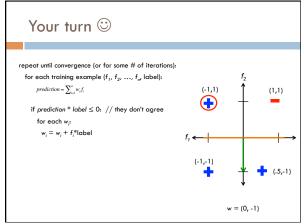
Perceptron learning algorithm

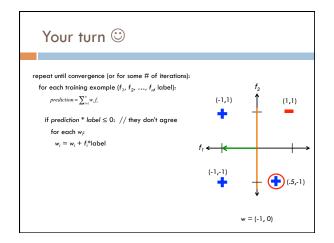
repeat until convergence (or for some # of iterations): for each training example ($f_1, f_2, ..., f_n$ label): $prediction = b + \sum_{i=1}^{n} w_i f_i$

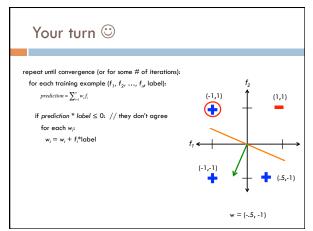
if prediction * label \leq 0: // they don't agree for each w_i: $w_i = w_i + f_i^*$ |abel b = b + |abe|

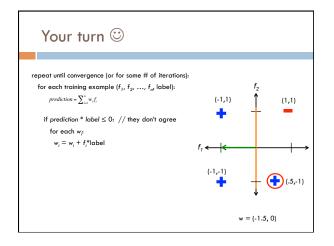
Would this work for non-binary features, i.e. real-valued?

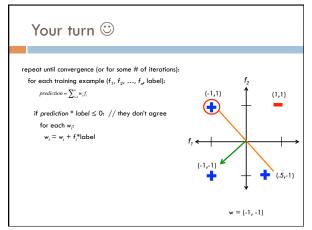


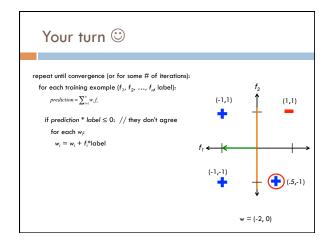


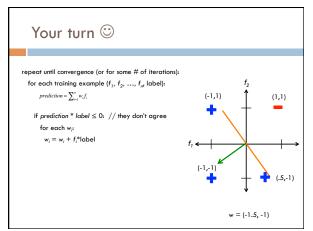


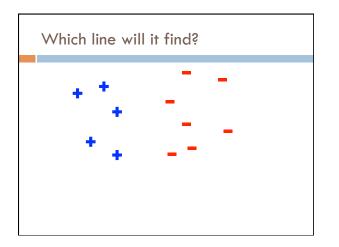


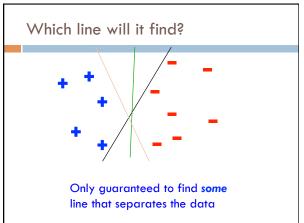










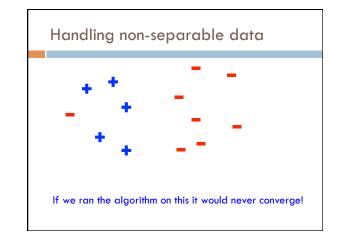


Convergence

repeat until convergence (or for some # of iterations): for each training example ($f_1, f_2, ..., f_n$, label): $prediction = b + \sum_{i=1}^{n} w_i f_i$

if prediction * label \leq 0: // they don't agree for each w_i: $w_i = w_i + f_i^*$ |abel b = b +|abel

Why do we also have the "some # iterations" check?



Convergence

repeat until convergence (or for some # of iterations): for each training example ($f_1, f_2, ..., f_n$, label): $prediction = b + \sum_{i=1}^{n} w_i f_i$

if prediction * label \leq 0: // they don't agree for each w_i: $w_i = w_i + f_i^*$ |abel

b = b + label

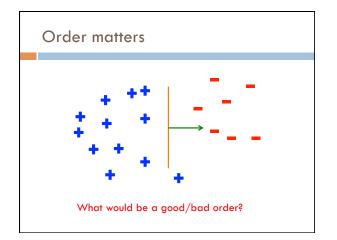
Also helps avoid overfitting! (This is harder to see in 2-D examples, though)

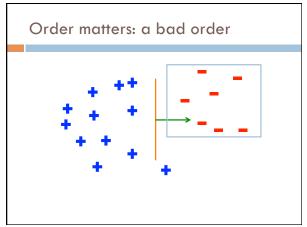
Ordering

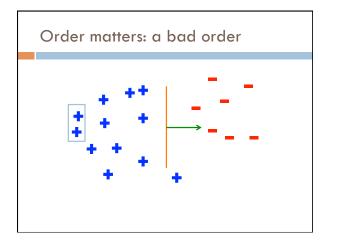
repeat until convergence (or for some # of iterations): for each training example ($f_1, f_2, ..., f_n$, label): $prediction = b + \sum_{i=1}^{n} w_i f_i$

if prediction * label \leq 0: // they don't agree for each w_i: $w_i = w_i + f_i^*$ |abel b = b + label

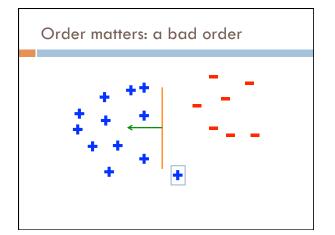
What order should we traverse the examples? Does it matter?

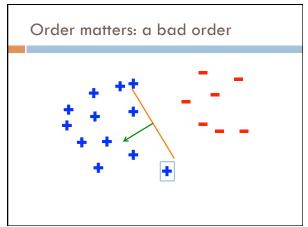


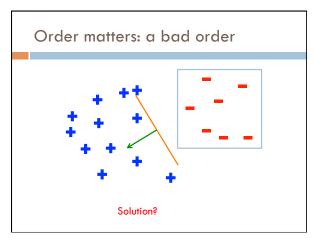


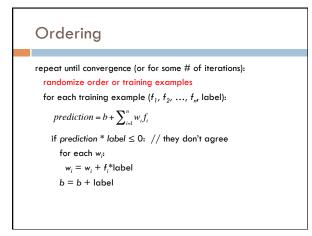


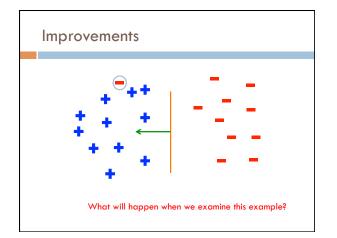


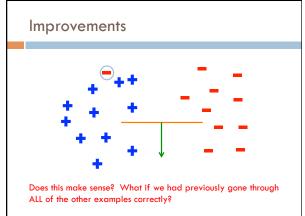


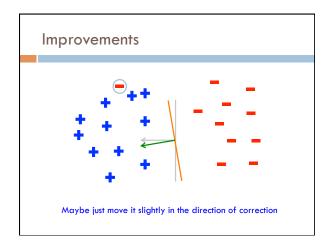












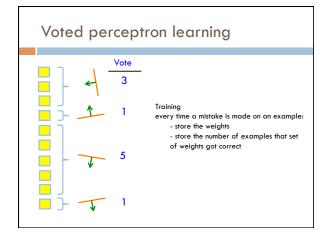
Voted perceptron learning

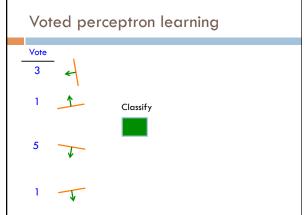
Training

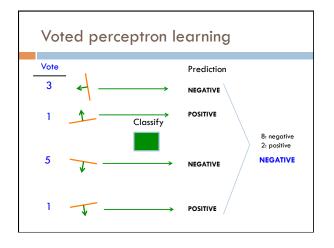
- every time a mistake is made on an example:
- store the weights (i.e. before changing for current example)
- store the number of examples that set of weights got correct

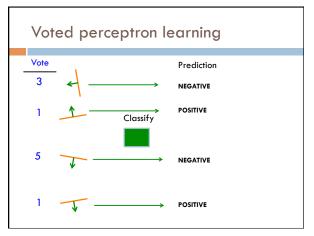
Classify

- calculate the prediction from ALL saved weights
- multiply each prediction by the number it got correct (i.e a weighted vote) and take the sum over all predictions
- said another way: pick whichever prediction has the most votes









Voted perceptron learning

Works much better in practice

Avoids overfitting, though it can still happen

Avoids big changes in the result by examples examined at the end of training

Voted perceptron learning

Training

- every time a mistake is made on an example:
- store the weights (i.e. before changing for current example)
- store the number of examples that set of weights got correct

Classify

- calculate the prediction from ALL saved weights
- multiply each prediction by the number it got correct (i.e a weighted vote) and take the sum over all predictions
- said another way: pick whichever prediction has the most votes

Any issues/concerns?

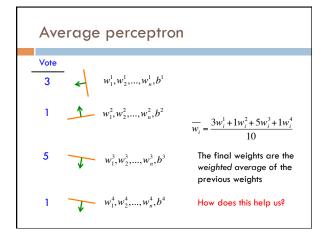
Voted perceptron learning

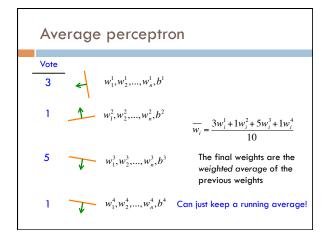
Training

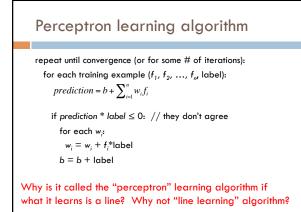
- every time a mistake is made on an example:
- store the weights (i.e. before changing for current example)
- store the number of examples that set of weights got correct

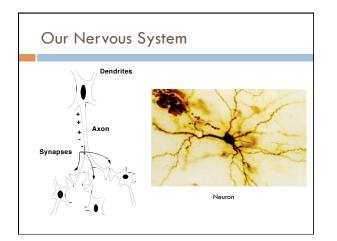
Classify

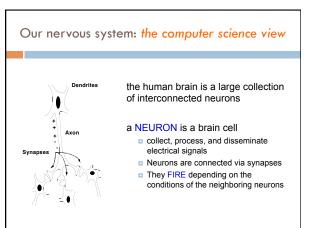
- calculate the prediction from ALL saved weights
- multiply each prediction by the number it got correct (i.e a weighted vote) and take the sum over all predictions
- said another way: pick whichever prediction has the most votes
 - 1. Can require a lot of storage
 - 2. Classifying becomes very, very expensive

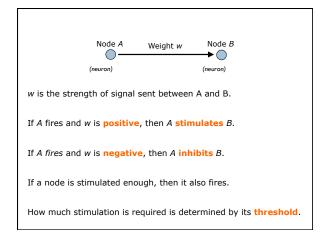


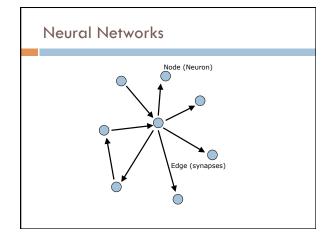


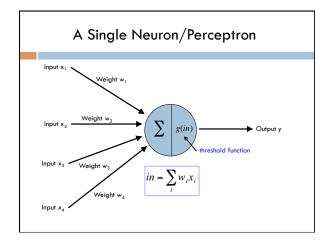


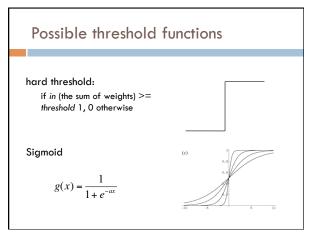


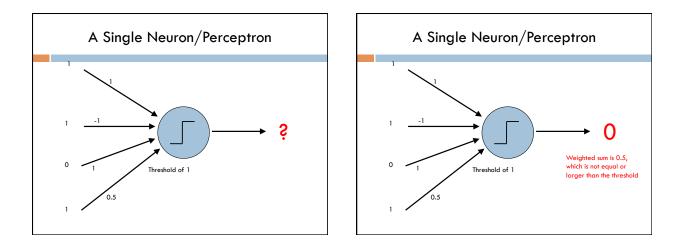


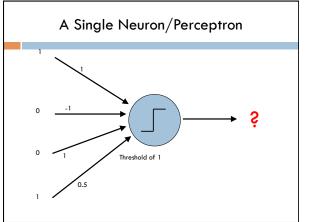


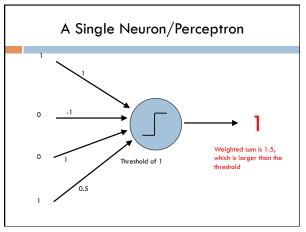


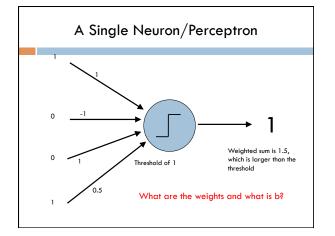












McCulloch and Pitts (1943) – introduced model of artificial neurons and suggested they could learn

Hebb (1949) – Simple updating rule for learning

Rosenblatt (1962) - the perceptron model

Minsky and Papert (1969) - wrote Perceptrons

Bryson and Ho (1969, but largely ignored until 1980s) – invented back-propagation learning for multilayer networks