
10/17/13	

1	

ADVANCED
PERCEPTRON LEARNING

David Kauchak
CS 451 – Fall 2013

Admin

Assignment 2
 contest L
 due Sunday night!

Linear models

A linear model in n-dimensional space (i.e. n features)
is define by n+1 weights:

In two dimensions, a line:

In three dimensions, a plane:

In n-dimensions, a hyperplane

0 = w1 f1 +w2 f2 + b (where b = -a)

0 = w1 f1 +w2 f2 +w3 f3 + b

0 = b+ wi fii=1

n
∑

Learning a linear classifier

f1

f2

w=(1,0) What does this model currently say?

10/17/13	

2	

Learning a linear classifier

f1

f2

w=(1,0)

POSITIVE NEGATIVE

Learning a linear classifier

f1

f2

w=(1,0)

(-1,1)

Is our current guess:
right or wrong?

0 = w1 f1 +w2 f2

Learning a linear classifier

f1

f2

w=(1,0)

(-1,1)

0 = w1 f1 +w2 f2

1*−1+ 0*1= −1

1* f1 + 0* f2 =

predicts negative, wrong

How should we update the model?

A closer look at why we got it wrong

1*−1+ 0*1= −1

1* f1 + 0* f2 =

w1 w2

We’d like this value to be positive
since it’s a positive value

(-1, 1, positive)

contributed in the
wrong direction

could have contributed
(positive feature), but didn’t

decrease increase

1 -> 0 0 -> 1

10/17/13	

3	

Learning a linear classifier

f1

f2

w=(0,1)

(-1,1)

0 = w1 f1 +w2 f2

Graphically, this also makes sense!

Learning a linear classifier

f1

f2

w=(0,1)

(1,-1)

0 = w1 f1 +w2 f2

Is our current guess:
right or wrong?

Learning a linear classifier

f1

f2

w=(0,1)

(1,-1)

0 = w1 f1 +w2 f2

0*1+1*−1= −1

0* f1 +1* f2 =

predicts negative, correct

How should we update the model?

Learning a linear classifier

f1

f2

w=(0,1)

(1,-1)

0 = w1 f1 +w2 f2

Already correct… don’t change it!

0*1+1*−1= −1

0* f1 +1* f2 =

10/17/13	

4	

Learning a linear classifier

f1

f2

w=(0,1)

(-1,-1)

0 = w1 f1 +w2 f2

Is our current guess:
right or wrong?

Learning a linear classifier

f1

f2

w=(0,1)

(-1,-1)

0 = w1 f1 +w2 f2

0*−1+1*−1= −1

0* f1 +1* f2 =

predicts negative, wrong

How should we update the model?

A closer look at why we got it wrong

0*−1+1*−1= −1

0* f1 +1* f2 =

w1 w2

We’d like this value to be positive
since it’s a positive value

(-1, -1, positive)

didn’t contribute,
but could have

contributed in the wrong
direction

decrease decrease

0 -> -1 1 -> 0

Learning a linear classifier

f1

f2

f1, f2, label

-1,-1, positive
-1, 1, positive
 1, 1, negative
 1,-1, negative

w=(-1,0)

10/17/13	

5	

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
 for each training example (f1, f2, …, fn, label):
 check if it’s correct based on the current model

 if not correct, update all the weights:
 if label positive and feature positive:
 increase weight (increase weight = predict more positive)
 if label positive and feature negative:
 decrease weight (decrease weight = predict more positive)
 if label negative and feature positive:
 decrease weight (decrease weight = predict more negative)
 if label negative and negative weight:
 increase weight (increase weight = predict more negative)

wi fi

A trick…

if label positive and feature positive:

 increase weight (increase weight = predict more positive)

if label positive and feature negative:

 decrease weight (decrease weight = predict more positive)

if label negative and feature positive:

 decrease weight (decrease weight = predict more negative)

if label negative and negative weight:

 increase weight (increase weight = predict more negative)

Let positive label = 1 and negative label = -1
label * fi

1*1=1

1*-1=-1

-1*1=-1

-1*-1=1

A trick…

if label positive and feature positive:

 increase weight (increase weight = predict more positive)

if label positive and feature negative:

 decrease weight (decrease weight = predict more positive)

if label negative and feature positive:

 decrease weight (decrease weight = predict more negative)

if label negative and negative weight:

 increase weight (increase weight = predict more negative)

Let positive label = 1 and negative label = -1
label * fi

1*1=1

1*-1=-1

-1*1=-1

-1*-1=1

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
 for each training example (f1, f2, …, fn, label):

 check if it’s correct based on the current model

 if not correct, update all the weights:

 for each wi:
 wi = wi + fi*label

 b = b + label

How do we check if it’s correct?

10/17/13	

6	

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:
 wi = wi + fi*label

 b = b + label

prediction = b+ wi fii=1

n
∑

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:
 wi = wi + fi*label

 b = b + label

prediction = b+ wi fii=1

n
∑

Would this work for non-binary features, i.e. real-valued?

Your turn J

repeat until convergence (or for some # of iterations):

 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:

 wi = wi + fi*label

prediction = wi fii=1

n
∑

f1

f2

(-1,1) (1,1)

(.5,-1)
(-1,-1)

1

2 3

4

-  Repeat until convergence
-  Keep track of w1, w2 as they change
-  Redraw the line after each step

w = (1, 0)

Your turn J

repeat until convergence (or for some # of iterations):

 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:

 wi = wi + fi*label

prediction = wi fii=1

n
∑

f1

f2

(-1,1) (1,1)

(-1,-1)

w = (0, -1)

(.5,-1)

10/17/13	

7	

Your turn J

repeat until convergence (or for some # of iterations):

 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:

 wi = wi + fi*label

prediction = wi fii=1

n
∑

f1

f2

(-1,1) (1,1)

(-1,-1)

w = (-1, 0)

(.5,-1)

Your turn J

repeat until convergence (or for some # of iterations):

 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:

 wi = wi + fi*label

prediction = wi fii=1

n
∑

f1

f2

(-1,1) (1,1)

(-1,-1)

w = (-.5, -1)

(.5,-1)

Your turn J

repeat until convergence (or for some # of iterations):

 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:

 wi = wi + fi*label

prediction = wi fii=1

n
∑

f1

f2

(-1,1) (1,1)

(-1,-1)

w = (-1.5, 0)

(.5,-1)

Your turn J

repeat until convergence (or for some # of iterations):

 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:

 wi = wi + fi*label

prediction = wi fii=1

n
∑

f1

f2

(-1,1) (1,1)

(-1,-1)

w = (-1, -1)

(.5,-1)

10/17/13	

8	

Your turn J

repeat until convergence (or for some # of iterations):

 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:

 wi = wi + fi*label

prediction = wi fii=1

n
∑

f1

f2

(-1,1) (1,1)

(-1,-1)

w = (-2, 0)

(.5,-1)

Your turn J

repeat until convergence (or for some # of iterations):

 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:

 wi = wi + fi*label

prediction = wi fii=1

n
∑

f1

f2

(-1,1) (1,1)

(-1,-1)

w = (-1.5, -1)

(.5,-1)

Which line will it find? Which line will it find?

Only guaranteed to find some
line that separates the data

10/17/13	

9	

Convergence

repeat until convergence (or for some # of iterations):
 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:
 wi = wi + fi*label

 b = b + label

prediction = b+ wi fii=1

n
∑

Why do we also have the “some # iterations” check?

Handling non-separable data

If we ran the algorithm on this it would never converge!

Convergence

repeat until convergence (or for some # of iterations):
 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:
 wi = wi + fi*label

 b = b + label

prediction = b+ wi fii=1

n
∑

Also helps avoid overfitting!
(This is harder to see in 2-D examples, though)

Ordering

repeat until convergence (or for some # of iterations):
 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:
 wi = wi + fi*label

 b = b + label

prediction = b+ wi fii=1

n
∑

What order should we traverse the examples?
Does it matter?

10/17/13	

10	

Order matters

What would be a good/bad order?

Order matters: a bad order

Order matters: a bad order Order matters: a bad order

10/17/13	

11	

Order matters: a bad order Order matters: a bad order

Order matters: a bad order

Solution?

Ordering

repeat until convergence (or for some # of iterations):
 randomize order or training examples

 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree
 for each wi:

 wi = wi + fi*label

 b = b + label

prediction = b+ wi fii=1

n
∑

10/17/13	

12	

Improvements

What will happen when we examine this example?

Improvements

Does this make sense? What if we had previously gone through
ALL of the other examples correctly?

Improvements

Maybe just move it slightly in the direction of correction

Voted perceptron learning

Training
-  every time a mistake is made on an example:

-  store the weights (i.e. before changing for current example)
-  store the number of examples that set of weights got correct

Classify

-  calculate the prediction from ALL saved weights

-  multiply each prediction by the number it got correct (i.e a
weighted vote) and take the sum over all predictions

-  said another way: pick whichever prediction has the most votes

10/17/13	

13	

Voted perceptron learning

3

Vote

1

1

5

Training
every time a mistake is made on an example:

-  store the weights
-  store the number of examples that set
of weights got correct

Voted perceptron learning

3

Vote

1

1

5

Classify

Voted perceptron learning

3

Vote

1

1

5

Classify

Prediction

POSITIVE

NEGATIVE

POSITIVE

NEGATIVE NEGATIVE

8: negative
2: positive

Voted perceptron learning

3

Vote

1

1

5

Classify

Prediction

POSITIVE

NEGATIVE

POSITIVE

NEGATIVE

10/17/13	

14	

Voted perceptron learning

Works much better in practice

Avoids overfitting, though it can still happen

Avoids big changes in the result by examples
examined at the end of training

Voted perceptron learning

Training
-  every time a mistake is made on an example:

-  store the weights (i.e. before changing for current example)
-  store the number of examples that set of weights got correct

Classify

-  calculate the prediction from ALL saved weights

-  multiply each prediction by the number it got correct (i.e a
weighted vote) and take the sum over all predictions

-  said another way: pick whichever prediction has the most votes

Any issues/concerns?

Voted perceptron learning

Training

-  every time a mistake is made on an example:
-  store the weights (i.e. before changing for current example)
-  store the number of examples that set of weights got correct

Classify

-  calculate the prediction from ALL saved weights

-  multiply each prediction by the number it got correct (i.e a weighted vote)
and take the sum over all predictions

-  said another way: pick whichever prediction has the most votes

1.  Can require a lot of storage
2.  Classifying becomes very, very expensive

Average perceptron

w11,w
1
2,...,w

1
n,b

13

Vote

1

1

5

w2
1,w

2
2,...,w

2
n,b

2

w3
1,w

3
2,...,w

3
n,b

3

w4
1,w

4
2,...,w

4
n,b

4

wi =
3w1i +1w

2
i + 5w

3
i +1w

4
i

10

The final weights are the
weighted average of the
previous weights

How does this help us?

10/17/13	

15	

Average perceptron

w11,w
1
2,...,w

1
n,b

13

Vote

1

1

5

w2
1,w

2
2,...,w

2
n,b

2

w3
1,w

3
2,...,w

3
n,b

3

w4
1,w

4
2,...,w

4
n,b

4

The final weights are the
weighted average of the
previous weights

Can just keep a running average!

wi =
3w1i +1w

2
i + 5w

3
i +1w

4
i

10

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:
 wi = wi + fi*label

 b = b + label

prediction = b+ wi fii=1

n
∑

Why is it called the “perceptron” learning algorithm if
what it learns is a line? Why not “line learning” algorithm?

Our Nervous System

Synapses

Axon

Dendrites

Synapses
+

+

+
-
-

(weights)

Nodes

Neuron

Our nervous system: the computer science view

the human brain is a large collection
of interconnected neurons

a NEURON is a brain cell

¤  collect, process, and disseminate
electrical signals

¤  Neurons are connected via synapses
¤  They FIRE depending on the

conditions of the neighboring neurons

Synapses

Axon

Dendrites

Synapses
+

+

+
-
-

(weights)

Nodes

10/17/13	

16	

w is the strength of signal sent between A and B.

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

If a node is stimulated enough, then it also fires.

How much stimulation is required is determined by its threshold.

Weight w Node A Node B

(neuron) (neuron)

Neural Networks

Node (Neuron)

Edge (synapses)

Output y

Input x1

Input x2

Input x3

Input x4

Weight w1

Weight w2

Weight w3

Weight w4

A Single Neuron/Perceptron

€

in = wi
i
∑ xi

€

∑

€

g(in)

threshold function

Possible threshold functions

hard threshold:
if in (the sum of weights) >=
threshold 1, 0 otherwise

Sigmoid

€

g(x) =
1

1+ e−ax

10/17/13	

17	

1

-1

1

0.5

A Single Neuron/Perceptron

?
Threshold of 1

1

1

0

1

1

-1

1

0.5

0
Threshold of 1

1

1

0

1

Weighted sum is 0.5,
which is not equal or
larger than the threshold

A Single Neuron/Perceptron

1

-1

1

0.5

?
Threshold of 1

1

0

0

1

A Single Neuron/Perceptron

1

-1

1

0.5

1
Threshold of 1

1

0

0

1

Weighted sum is 1.5,
which is larger than the
threshold

A Single Neuron/Perceptron

10/17/13	

18	

1

-1

1

0.5

1
Threshold of 1

1

0

0

1

Weighted sum is 1.5,
which is larger than the
threshold

A Single Neuron/Perceptron

What are the weights and what is b?

History of Neural Networks

McCulloch and Pitts (1943) – introduced model of artificial
neurons and suggested they could learn

Hebb (1949) – Simple updating rule for learning

Rosenblatt (1962) - the perceptron model

Minsky and Papert (1969) – wrote Perceptrons

Bryson and Ho (1969, but largely ignored until 1980s) – invented
back-propagation learning for multilayer networks

