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CLUSTERING BEYOND  
K-MEANS 
David Kauchak 
CS 451 – Fall 2013 

Administrative 

Final project 
¤  Presentations on Friday 

n  3 minute max 
n  1-2 PowerPoint slides.  E-mail me by 9am on Friday 
n  What problem you tackled and results 

¤  Paper and final code submitted on Sunday 

Final exam next week 

K-means 

Start with some initial cluster centers 
 
Iterate: 

¤ Assign/cluster each example to closest center 
¤  Recalculate centers as the mean of the points in a cluster 

Problems with K-means 

Determining K is challenging 
 
Spherical assumption about the data (distance to 
cluster center) 
 
Hard clustering isn’t always right 
 
Greedy approach 
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Problems with K-means 

What would K-means give us here? 

Assumes spherical clusters 

k-means assumes spherical clusters! 

K-means: another view K-means: another view 
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K-means: assign points to nearest center K-means: readjust centers 

Iteratively learning a collection of spherical clusters 

EM clustering:  
mixtures of Gaussians 

Assume data came from a mixture of Gaussians (elliptical data), 
assign data to cluster with a certain probability 

k-means EM 

EM clustering 

Very similar at a high-level to K-means 
 
Iterate between assigning points and recalculating 
cluster centers 
 
Two main differences between K-means and EM 
clustering: 
1.  We assume elliptical clusters (instead of spherical) 
2.  It is a “soft” clustering algorithm 
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Soft clustering 

p(red) = 0.8 
p(blue) = 0.2 

p(red) = 0.9 
p(blue) = 0.1 

EM clustering 

Start with some initial cluster centers 
Iterate: 

-  soft assigned points to each cluster 

-  recalculate the cluster centers 

Calculate: p(θc| x) 
the probability of each point belonging to each 
cluster 

Calculate new cluster parameters, θc 
maximum likelihood cluster centers given the 
current soft clustering 

EM example 

Figure from Chris Bishop 

Start with some initial cluster centers 

Step 1: soft cluster points 

Which points belong to which clusters (soft)? 

Figure from Chris Bishop 
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Step 1: soft cluster points 

Notice it’s a soft (probabilistic) assignment 

Figure from Chris Bishop 

Step 2: recalculate centers 

Figure from Chris Bishop 

What do the new centers look like? 

Step 2: recalculate centers 

Figure from Chris Bishop 

Cluster centers get a weighted contribution from points 

keep iterating… 

Figure from Chris Bishop 
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Model: mixture of Gaussians 

How do you define a Gaussian (i.e. ellipse)? 
In 1-D? 
In M-D? 

Gaussian in 1D 

f (x;σ ,θ ) = 1
σ 2π

e
−
(x−µ )2

2σ 2

parameterized by the mean and the standard deviation/variance 

Gaussian in multiple dimensions 

( )
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/2
1 1[ ; , ] exp[ ( ) ( )]

22 det( )
T

dN x x xµ µ µ
π

−Σ = − − Σ −
Σ

Covariance determines  
the shape of these contours 

We learn the means of each cluster (i.e. the center) and the 
covariance matrix (i.e. how spread out it is in any given direction) 

Step 1: soft cluster points 

How do we calculate these probabilities?  

-  soft assigned points to each cluster 
Calculate: p(θc|x)

the probability of each point belonging to each cluster 
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Step 1: soft cluster points 

Just plug into the Gaussian equation for each cluster! 
(and normalize to make a probability) 

-  soft assigned points to each cluster 
Calculate: p(θc|x)

the probability of each point belonging to each cluster 

Step 2: recalculate centers 

Recalculate centers: 
calculate new cluster parameters, θc 
maximum likelihood cluster centers given the current 
soft clustering 

How do calculate the cluster centers? 

Fitting a Gaussian 

What is the “best”-fit Gaussian for this data? 

f (x;σ ,θ ) = 1
σ 2π

e
−
(x−µ )2

2σ 2

10, 10, 10, 9, 9, 8, 11, 7, 6, … 

Recall this is the 1-D Gaussian equation: 

Fitting a Gaussian 

What is the “best”-fit Gaussian for this data? 

f (x;σ ,θ ) = 1
σ 2π

e
−
(x−µ )2

2σ 2

10, 10, 10, 9, 9, 8, 11, 7, 6, … 

Recall this is the 1-D Gaussian equation: 

The MLE is just the mean and variance of the data! 
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Step 2: recalculate centers 

Recalculate centers: 
Calculate θc 
maximum likelihood cluster centers given the current 
soft clustering 

How do we deal with “soft” data points? 

Step 2: recalculate centers 

Recalculate centers: 
Calculate θc 
maximum likelihood cluster centers given the current 
soft clustering 

Use fractional counts! 

E and M steps: creating a better model 

Expectation: Given the current model, figure out the expected 
probabilities of the data points to each cluster 

Maximization: Given the probabilistic assignment of all the points, 
estimate a new model, θc  

p(θc|x) What is the probability of each 
point belonging to each cluster? 

Just like NB maximum likelihood estimation, except 
we use fractional counts instead of whole counts 

EM stands for Expectation Maximization 

Similar to k-means 

Iterate: 
Assign/cluster each point to closest center 
 

 
Recalculate centers as the mean of the points in a cluster 

Expectation: Given the current model, 
figure out the expected probabilities of 
the points to each cluster 

p(θc|x) 

Maximization: Given the probabilistic assignment 
of all the points, estimate a new model, θc  
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E and M steps 

Expectation: Given the current model, figure out the expected 
probabilities of the data points to each cluster 

Maximization: Given the probabilistic assignment of all the points, 
estimate a new model, θc  

each iterations increases the likelihood of the data and 
guaranteed to converge (though to a local optimum)! 

Iterate: 

EM 

EM is a general purpose approach for training a 
model when you don’t have labels 

Not just for clustering! 
¤ K-means is just for clustering 

One of the most general purpose unsupervised 
approaches 

¤ can be hard to get right! 

EM is a general framework 

Create an initial model, θ’  
¤  Arbitrarily, randomly, or with a small set of training examples 

Use the model θ’ to obtain another model θ such that 

 Σi log Pθ(datai) > Σi log Pθ’(datai) 

Let θ’ = θ and repeat the above step until reaching a local 
maximum 

¤  Guaranteed to find a better model after each iteration 

Where else have you seen EM? 

i.e. better models data 
(increased log likelihood) 

EM shows up all over the place 

Training HMMs (Baum-Welch algorithm) 
 
Learning probabilities for Bayesian networks 

 
EM-clustering 
 

Learning word alignments for language translation 
 
Learning Twitter friend network 

 
Genetics 
 
Finance 
 
Anytime you have a model and unlabeled data! 
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Other clustering algorithms 

K-means and EM-clustering are by far the most 
popular for clustering 
 
However, they can’t handle all clustering tasks 

What types of clustering problems can’t they handle? 

Non-gaussian data 

What is the problem? 

Similar to classification:  
global decision (linear 
model) vs. local decision 
(K-NN) 

Spectral clustering 

Spectral clustering examples 

Ng et al On Spectral clustering: analysis and algorithm 

Spectral clustering examples 

Ng et al On Spectral clustering: analysis and algorithm 
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Spectral clustering examples 

Ng et al On Spectral clustering: analysis and algorithm 


