CLUSTERING BEYOND K-MEANS

David Kauchak
CS 451 – Fall 2013

Administrative

Final project
- Presentations on Friday
 - 3 minute max
 - 1-2 PowerPoint slides. E-mail me by 9am on Friday
 - What problem you tackled and results
- Paper and final code submitted on Sunday

Final exam next week

K-means

Start with some initial cluster centers

Iterate:
- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

Problems with K-means

Determining K is challenging

Spherical assumption about the data (distance to cluster center)

Hard clustering isn’t always right

Greedy approach
Problems with K-means

What would K-means give us here?

Assumes spherical clusters

k-means assumes spherical clusters!

K-means: another view

K-means: another view
K-means: assign points to nearest center

K-means: readjust centers

Iteratively learning a collection of spherical clusters

EM clustering: mixtures of Gaussians

Assume data came from a mixture of Gaussians (elliptical data), assign data to cluster with a certain probability

EM clustering

Very similar at a high-level to K-means

Iterate between assigning points and recalculating cluster centers

Two main differences between K-means and EM clustering:
1. We assume elliptical clusters (instead of spherical)
2. It is a "soft" clustering algorithm
Soft clustering

\[p(\text{red}) = 0.8 \]
\[p(\text{blue}) = 0.2 \]

\[p(\text{red}) = 0.9 \]
\[p(\text{blue}) = 0.1 \]

EM clustering

Start with some initial cluster centers

Iterate:

- soft assigned points to each cluster

 Calculate: \(p(\theta_c | x) \)

 the probability of each point belonging to each cluster

- recalculate the cluster centers

 Calculate new cluster parameters, \(\theta_c \)

 maximum likelihood cluster centers given the current soft clustering

EM example

Step 1: soft cluster points

Start with some initial cluster centers

Which points belong to which clusters (soft)?
Step 1: soft cluster points

Notice it's a soft (probabilistic) assignment

Figure from Chris Bishop

Step 2: recalculate centers

What do the new centers look like?

Figure from Chris Bishop

Step 2: recalculate centers

Cluster centers get a weighted contribution from points

Figure from Chris Bishop

keep iterating...
Model: mixture of Gaussians

How do you define a Gaussian (i.e. ellipse)?
In 1-D?
In M-D?

Gaussian in 1D

\[
 f(x; \theta) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

parameterized by the mean and the standard deviation/variance

Gaussian in multiple dimensions

\[
 M(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right)
\]

We learn the means of each cluster (i.e. the center) and the covariance matrix (i.e. how spread out it is in any given direction)

Step 1: soft cluster points

- soft assigned points to each cluster
 Calculate: \(p(\theta | x) \)
 the probability of each point belonging to each cluster

How do we calculate these probabilities?
Step 1: soft cluster points

- soft assigned points to each cluster
- Calculate: \(p(\theta | x) \)
- the probability of each point belonging to each cluster

Just plug into the Gaussian equation for each cluster! (and normalize to make a probability)

Step 2: recalculate centers

Recalculate centers:
- calculate new cluster parameters, \(\theta \)
- maximum likelihood cluster centers given the current soft clustering

How do calculate the cluster centers?

Fitting a Gaussian

What is the “best”-fit Gaussian for this data?

10, 10, 9, 9, 11, 7, 6, ...

Recall this is the 1-D Gaussian equation:

\[
f(x; \alpha, \theta) = \frac{1}{\alpha \sqrt{2\pi}} e^{-\frac{(x-\theta)^2}{2\alpha^2}}\]

Fitting a Gaussian

What is the “best”-fit Gaussian for this data?

10, 10, 9, 9, 11, 7, 6, ...

The MLE is just the mean and variance of the data!

Recall this is the 1-D Gaussian equation:

\[
f(x; \alpha, \theta) = \frac{1}{\alpha \sqrt{2\pi}} e^{-\frac{(x-\theta)^2}{2\alpha^2}}\]
Step 2: recalculate centers

Recalculate centers:
Calculate θ_c
maximum likelihood cluster centers given the current soft clustering

How do we deal with “soft” data points?

E and M steps: creating a better model

EM stands for Expectation Maximization

Expectation: Given the current model, figure out the expected probabilities of the data points to each cluster
$\mathbb{P}(\theta_c|x)$ What is the probability of each point belonging to each cluster?

Maximization: Given the probabilistic assignment of all the points, estimate a new model, θ_c
Just like NB maximum likelihood estimation, except we use fractional counts instead of whole counts

Similar to k-means

Iterate:
Assign/cluster each point to closest center

Expectation: Given the current model, figure out the expected probabilities of the points to each cluster
$\mathbb{P}(\theta_c|x)$

Maximization: Given the probabilistic assignment of all the points, estimate a new model, θ_c
E and M steps

Expectation: Given the current model, figure out the expected probabilities of the data points to each cluster

Maximization: Given the probabilistic assignment of all the points, estimate a new model, θ_1

Iterate:
- Each iteration increases the likelihood of the data and guaranteed to converge (though to a local optimum)!

EM

EM is a general purpose approach for training a model when you don’t have labels

- Not just for clustering!
 - K-means is just for clustering

- One of the most general purpose unsupervised approaches
 - Can be hard to get right!

EM is a general framework

Create an initial model, θ'
- Arbitrarily, randomly, or with a small set of training examples

Use the model θ' to obtain another model θ such that
$$\sum \log P_{\theta}(data) > \sum \log P_{\theta'}(data)$$
- I.e. better models data (increased log likelihood)

Let $\theta' = \theta$ and repeat the above step until reaching a local maximum
- Guaranteed to find a better model after each iteration

Where else have you seen EM?

EM shows up all over the place

- Training HMMs (Baum-Welch algorithm)
- Learning probabilities for Bayesian networks
- EM-clustering
- Learning word alignments for language translation
- Learning Twitter friend network
- Genetics
- Finance
- Anytime you have a model and unlabeled data!
Other clustering algorithms

K-means and EM-clustering are by far the most popular for clustering.

However, they can’t handle all clustering tasks.

What types of clustering problems can’t they handle?

Non-gaussian data

Similar to classification: global decision (linear model) vs. local decision (K-NN)

Spectral clustering
Spectral clustering examples

Ng et al. On Spectral clustering: analysis and algorithm