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Administrative

Final project

No office hours today

Supervised learning
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Supervised learning: given labeled examples

Unsupervised learning
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Unupervised learning:

given data, i.e. examples, but no labels
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Unsupervised learning

Given some example without labels, do something!

Unsupervised learning applications

learn clusters/groups without any label
customer segmentation (i.e. grouping)
image compression

bioinformatics: learn motifs

find important features

Unsupervised learning: clustering

Raw data features

» » Clusters
extract group info

classes/
features

clusters
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No “supervision”, we're only given data and want to find
natural groupings

Unsupervised learning: modeling

Most frequently, when people think of unsupervised
learning they think clustering

Another category: learning probabilities/parameters
for models without supervision

Learn a translation dictionary

Learn a grammar for a language

Learn the social graph
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Clustering

Clustering: the process of grouping a set of objects
into classes of similar objects

Applications?

Gene expression data

Data from Garber et al.
PNAS (98), 2001.

Face Clustering

Face clustering
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Search result clustering
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Clustering in search advertising

Find clusters of advertisers and
keywords
Keyword suggestion

Performance estimation

Bidded
Keyword
~10M nodes

Clustering applications

Find clusters of users
Targeted advertising
Exploratory analysis

Clusters of the Web Graph

Who-messages-who IM/text /twitter Distributed pagerank
graph computation

~100M nodes
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Data visualization

Wise et al, “Visualizing the non-visual” PNNL

ThemeScapes, Cartia
[Mountain height = cluster size]
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A data set with clear cluster structure
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Issues for clustering

Representation for clustering
How do we represent an example
features, etc.
Similarity /distance between examples

Flat clustering or hierarchical

Number of clusters
Fixed a priori
Data driven?

Clustering Algorithms

Flat algorithms

Usually start with a random (partial) partitioning

0=

Refine it iteratively
K means clustering
Model based clustering
Spectral clustering

Hierarchical algorithms
Bottom-up, agglomerative
Top-down, divisive
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Hard vs. soft clustering

Hard clustering: Each example belongs to exactly one cluster

Soft clustering: An example can belong to more than one cluster
(probabilistic)
Makes more sense for applications like creating browsable hierarchies

You may want to put a pair of sneakers in two clusters: (i) sports apparel
and (i) shoes

K-means

Most well-known and popular clustering algorithm:

Start with some initial cluster centers

lterate:
Assign/cluster each example to closest center

Recalculate centers as the mean of the points in a cluster

K-means: an example

K-means: Initialize centers randomly
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K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

K-means: readjust centers
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K-means: assign points to nearest center

K-means: readjust centers
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K-means: qssign points to nearest center K-meqns
lterate:
Assign/cluster each example to closest center
Recalculate centers as the mean of the points in a cluster
® o
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No changes: Done

How do we do this?
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K-means

lterate:
= Assign/cluster each example to closest center

iterate over each point:
- get distance to each cluster center
- assign to closest center (hard cluster)

= Recalculate centers as the mean of the points in a cluster

@)

K-means

lterate:
= Assign/cluster each example to closest center

iterate over each point:
- get distance to each cluster center
- assign to closest center (hard cluster)

= Recalculate centers as the mean of the points in a cluster
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What distance measure should we use?

Distance measures
Euclidean:

d0ey) =y Dy (=2

good for spatial data

Clustering documents (e.g. wine data)

One feature for each word. The value is the number of times that
word occurs.

Documents are points or vectors in this space

system Doc2
Doc1
Docé
Doc3 Docdoocs refrieval
information
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When Euclidean distance doesn’t work Issues with Euclidian distance
== |
GOSSIP d> d>
the Euclidean distance
1 dl between - and - is large
Which document is closest to q ’
using Euclidian distance? I but, the distribution of terms
Which do you think should be I |n. 'h,e qlfery e 'h‘e
loser? distribution of terms in the
c ) l document - are very similar
0 —]ds ds
0 JEALOUS JEALOUS

cosine distance

cosine similarity
|

cosine similarity is a similarity between O and 1,
with things that are similar 1 and not O

|
XY

szm(xy)-——— = ’1 Nl
I N /2 32
We want a distance measure, cosine distance:

correlated with the
d(x,y)=1-sim(x,y)

angle between two vectors

» - good for text data and many other “real world” data sets
- is computationally friendly since we only need to consider
features that have non-zero values both examples
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K-means

lterate:
Assign/cluster each example to closest center

Recalculate centers as the mean of the points in a cluster

‘ Where are the cluster centers?

K-means

lterate:

Assign/cluster each example to closest center

Recalculate centers as the mean of the points in a cluster

' How do we calculate these?

K-means

lterate:
Assign/cluster each example to closest center

Recalculate centers as the mean of the points in a cluster

Mean of the points in the cluster:

® WO =L
: ICI &L
.. where:
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K-means loss function

K-means tries to minimize what is called the “k-means”
loss function:

loss = Ed(x,.,m )* where y, is cluster center for x,

i=l

that is, the sum of the squared distances from
each point to the associated cluster center

11



11/25/13

Minimizing k-means loss

lterate:
1. Assign/cluster each example to closest center

2. Recalculate centers as the mean of the points in a cluster

"
loss = Ed(xf,yk )" where g, is cluster center for x,
i=1
Does each step of k-means move towards reducing this loss
function (or at least not increasing)?

Minimizing k-means loss

Iterate:
1. Assign/cluster each example to closest center

2. Recalculate centers as the mean of the points in a cluster

loss = Ed(x,, w)* where i, is cluster center for x,

i=l

This isn’t quite a complete proof/argument, but:
1. Any other assignment would end up in a larger loss

2. The mean of a set of values minimizes the squared error

Minimizing k-means loss

lterate:
1. Assign/cluster each example to closest center

2. Recalculate centers as the mean of the points in a cluster

loss = Ed(xf,yk ) where g, is cluster center for x,

i=1
Does this mean that k-means will always find the minimum

loss /clustering?

Minimizing k-means loss

Iterate:
1. Assign/cluster each example to closest center

2. Recalculate centers as the mean of the points in a cluster

loss = Ed(x,, w)* where i, is cluster center for x,

i=l

NO! It will find a minimum.

Unfortunately, the k-means loss function is generally not
convex and for most problems has many, many minima

We're only guaranteed to find one of them

12
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K-means variations/parameters

Start with some initial cluster centers

Iterate:

= Assign/cluster each example to closest center

= Recalculate centers as the mean of the points in a cluster

What are some other variations/
parameters we haven't specified?

K-means variations/parameters
Initial (seed) cluster centers

Convergence
A fixed number of iterations
partitions unchanged

Cluster centers don’t change

K!

K-means: Initialize centers randomly

What would happen here?

Seed selection ideas?

Seed choice

Results can vary drastically based on random seed selection

Some seeds can result in poor convergence rate, or
convergence to sub-optimal clusterings

Common heuristics
Random centers in the space
Randomly pick examples
Points least similar to any existing center (furthest centers heuristic)
Try out multiple starting points

Initialize with the results of another clustering method

13
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Furthest centers heuristic

U, = pick random point

K-means: Initialize furthest from centers

fori=2toK: @) )
. = point that is furthest from any previous centers 9)
o O @)
argmax min ®
= . Lod(xu;
H x u;l<j<i (o) O o @)
point with the largest distance smallest distance from x to any Pick a random point for the first center
to any previous center previous center
K-means: Initialize furthest from centers K-means: Initialize furthest from centers
O O o0
@) @)
o O O © O @)
@ @
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What point will be chosen next2

Furthest point from center

What point will be chosen next?

14
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K-means: Initialize furthest from centers

K-means: Initialize furthest from centers

Ce Ce
@) @)
o O o @ O o
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Furthest point from center Furthest point from center
What point will be chosen next2 Any issues/concerns with this approach?
w
Furthest points concerns Furthest points concerns
o w
o Y
o o oo
%o %o
o If we do a number of trials, will we get
o OO ol OO different centers?
OO If k = 4, which points will get chosen? (@] OO
© @) © @)
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Furthest points concerns

K-means++

U, = pick random point

»
fork =2 to K:
fori=1toN:
» s, =mind(x, U, _,.,)// smallest distance to any center
o o _ . . .
[P M\ = randomly pick point proportionate to s
o Doesn’t deal well with outliers
ol * .
% o How does this help?
o 00
(@]
K-means++

U, = pick random point

fork = 2 to K:

fori=11to N:
s, =mind(x, U, _,,)// smallest distance to any center

U = randomly pick point proportionate to s

- Makes it possible to select other points

- if #points >> #outliers, we will pick good points
Makes it non-deterministic, which will help with random runs
- Nice theoretical guarantees!
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