

Admin
Final project

Ensemble learning

Basic idea: if one classifier works well, why not use multiple classifiers!

le	dea	4: b	00	sting					
tra	ining (data		"traini	ng" d	ata 2	"traini	ng" d	ata 3
Data	Label	Weight		Data	Label	Weight	Data	Label	Weight
	0	0.2	X		0	0.1		0	0.05
	0	0.2			0	0.1		0	0.2
	1	0.2	7		1	0.4		1	0.2
	1	0.2	'		1	0.1		1	0.05
	0	0.2			0	0.3		0	0.5

"Strong" learner

Given

- $\hfill\square$ a reasonable amount of training data
- \square a target error rate $\ \mathcal E$
- $\hfill\square$ a failure probability $\hfill p$

A strong learning algorithm will produce a classifier with error rate $< \varepsilon$ with probability 1-p

 weighted vote based on how well the weak classifier did when it was trained

- for k = 1 to iterations:
 - $classifier_k = learn a weak classifier based on weights$
 - calculate weighted error for this classifier

$$\varepsilon_k = \sum_{i=1}^n w_i * 1[label_i \neq classifier_k(x_i)]$$

calculate "score" for this classifier:

$$\begin{split} \alpha_k &= \frac{1}{2} \log \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right) \\ \text{change the example weights} \\ w_i &= \frac{1}{Z} w_i \exp \left(-\alpha_k * label_i * classifier_k(x_i) \right) \end{split}$$

AdaBoost: train

 $classifier_k = learn a$ weak classifier based on weights

weighted error for this classifier is:

$$\varepsilon_k = \sum_{i=1}^n w_i * 1[label_i \neq classifier_k(x_i)]$$

What does this say?

 $classifier_{k} = learn a$ weak classifier based on weights

"score" or weight for this classifier is:

$$\alpha_k = \frac{1}{2} \log \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

What does this look like (specifically for errors between 0 and 1)?

AdaBoost: classify

$$classify(x) = sign\left(\sum_{k=1}^{iterations} \alpha_k * classifier_k(x)\right)$$
The weighted vote of the learned classifiers
weighted by α (remember α varies from 1 to -1
training error)
What happens if a classifier has error >50%

AdaBoost: train, updating the weights

update the example weights

$$w_i = \frac{1}{Z} w_i \exp(-\alpha_k * label_i * classifier_k(x_i))$$

Remember, we want to enforce:

$$w_i \ge 0$$
$$\sum_{i=1}^n w_i = 1$$

Z is called the normalizing constant. It is used to make sure that the weights sum to 1 What should it be?

for k = 1 to iterations:

- $classifier_k = learn a weak classifier based on weights$
- weighted error for this classifier is:
- "score" or weight for this classifier is:
- change the example weights

What can we use as a classifier?

AdaBoost: train

for k = 1 to iterations:

- classifier_k = learn a weak classifier based on weights
- weighted error for this classifier is:
- "score" or weight for this classifier is:
- change the example weights
- Anything that can train on weighted examplesFor most applications, must be fast!
 - Why?

for k = 1 to iterations:

- classifier_k = learn a weak classifier based on weights
- weighted error for this classifier is:
- "score" or weight for this classifier is:
- change the example weights
- Anything that can train on weighted examplesFor most applications, must be fast!
- Each iteration we have to train a new classifier

Boosted decision stumps

One of the most common classifiers to use is a decision tree:

- can use a shallow (2-3 level tree)
- even more common is a 1-level tree
- called a decision stump 😊
- asks a question about a single feature

What does the decision boundary look like for a decision stump?

Boosted decision stumps

One of the most common classifiers to use is a decision tree:

- can use a shallow (2-3 level tree)
- even more common is a 1-level tree
- called a decision stump 😊
- asks a question about a single feature

What does the decision boundary look like for boosted decision stumps?

Boosted decision stumps

One of the most common classifiers to use is a decision tree:

- can use a shallow (2-3 level tree)
- even more common is a 1-level tree
- called a decision stump 😊
- asks a question about a single feature

- Linear classifier!

- Each stump defines the weight for that dimension
- If you learn multiple stumps for that dimension then it's the weighted average

 Rapid object detection using a boosted cascade of simple features

 P Viola, M.Jones - ... Vision and Pattern Recognition, 2001. CVPR ..., 2001 - ieeexplo

 ... overlap. Each partition yields a single final detection. The ... set. Experiments an Real-World Test Set We tested our system on the MIT+CMU frontal face test set [II]. This set consists of 130 images with 507 labeled frontal faces. A...

 Cited by 8422
 Related articles. All 129 versions. Cite. Save. More +
 ee.org

To give you some context of importance:

Google

The anatomy of a large-scale hyperfextual Web search engine 8 Brin, L Page - Computer networks and ISDN systems, 1998 - Elsevier This is largely because they all have high PageRahk. ... However, once the system was running smoothy. S. Brin, L - Page/Computer Networks and ISDN Systems 30 ... Google employs a number of techniques to improve search quality including **page rank**, anchor text, and proximity ... Cited by 11070 Related articles All 349 versions Cite Save

or:

Modeling word burstiness using the Dirichlet distribution RE Madsen, D Kauchak, <u>C Elkan</u> - Proceedings of the 22rd international ..., 2005 - di.acm.org Abstract Multimonial distributions are often used to model text documents. However, they do not appure well the phenomenon that words in a document tend to appear in bursts: if a word appears once, it is more likely to appear again. In this paper, we propose the ... Clicital by 164 Related articles All 34 versions Cite Save

Bagging vs Boosting						
Journal of Artificial Intelligence Research 11 (1999) 169-198	Submitted 1/99; published 8/99					
Popular Ensemble Methods: An Empirical Study						
David Opitz Department of Computer Science University of Montana Missoula, MIT 59812 USA	OPITZ@CS.UMT.EDU					
Richard Maelin Computer Science Department University of Minnesota Duluth, MN 55812 USA	RMACLIN@D.UMN.EDU					
http://arviv.org/pdf/1106/	1257 pdf					
<u>mp://drxiv.org/par/1100.</u>	<u>727.pu</u>					

