
To reduce or not to reduce, that is the question

1 Running jobs on the Hadoop cluster

For part 1 of assignment 8, you should have gotten the word counting example from class compiling.
To start with, let’s walkthrough the process of running code you’ve written on the hadoop cluster.

1. Get the code compiled

- If you’re working on a lab machine:

Eclipse already compiles the code for you, so you just need to cd into the bin directory
of the project directory within the Eclipse workspace folder where the WordCount code
resides. If you’re don’t have separate src and bin directories1 then just cd into the base
of the project directory.

- If you’re working on your own computer:

* Go to the src directory of the project directory within the Eclipse workspace folder
where the WordCount code resides. If you’re don’t have separate src and bin direc-
tories1 then just cd into the base of the project directory.

* Use scp or whatever approach you use to copy files to basin and copy all of the
source files in their package directory structure (in this case, demos) to a directory
on basin.

1There’s an option to select this when you setup a new project. In general, it’s a good idea to do this.

1



* Login to basin and then cd to the folder where you copied the source files. Compile
your code from the command-line:

javac −cp / usr / l o c a l /hadoop/hadoop−core −1 . 2 . 1 . j a r : . demos /∗ . java

In this case, there is just one package and one file, however, in general, you will need
to list all of the packages that have files you want to compile at the end of the javac
call.

2. Create a jar file

Hadoop requires that you generate a jar file with all of your code to run it. To create a jar file,
make sure you’re in the base directory where you just compiled your code (or where Eclipse
compiled it for you) and type the following:

j a r −cv f demos . j a r demos /∗ . c l a s s

The first argument is the name of the jar file to create and then everything else following is
what should go into the jar file. In general, you will need to list all of the packages that have
files you want to include at the end of the call to jar

3. Running your code on the cluster

Now that you have a jar file you can run your code on the cluster. When running hadoop
programs you use the jar flag to specify the jar file that contains the code and then you
specify which classes main class to run (including the package structure):

hadoop j a r demos . j a r demos . WordCount

You should see the usage statement printed out:

WordCount <input_dir> <output_dir>

Let’s run the full job with some very simple data:

hadoop j a r demos . j a r demos . WordCount / user /dkauchak/ lab / output

This uses some data in my directory with just a couple of files as input and will output the
results to your own output directory.

Take a look in the output directory and you should see a single file called part-00000. If
you look at the contents of this file you should see:

! 1

. 1

a 1

also 2

and 2

another 1

banana 1

but 1

file 3

2



has 2

is 2

more 1

some 2

text 2

the 1

this 3

with 1

word 1

words 2

2 WordCount variations

Now that we can compile and run our hadoop programs, let’s try out a few variants of our WordCount
program.

NoOpReducer

As I mentioned in class, one of the best ways to debug your program (and to develop it incremen-
tally) is to use a reducer that simply copies its input to the output. In the demos directory on the
course web page I have included the NoOpReducer.java class. Download this file and put it into
your Eclipse project.

Now, change the line in the run that sets the reducer to be:

conf.setReducerClass(NoOpReducer.class);

Recompile your code and then run this variant on the cluster. A few thoughts on this:

- Don’t forget to delete your output directory before you run it. Otherwise, you’re going to get
an exception.

- Both for this lab and when you’re writing your own programs, you want to make the process
of compiling, copying the files, generating the jar, etc. as simple as possible. My advice is
to setup a few terminal windows and designate each window as doing a few commands. You
can then simply use the up-arrow to rerun these commands for each variation. For example,
my setup is:

1. one terminal session for copying over the .java files

2. one terminal session for compiling and creating the jar file

3. one terminal session for deleting old output directory, executing hadoop command and
peeking at output

4. one terminal session for doing more involved things with the hdfs, etc.

3



It can take a minute or two to setup, but I can go from a code change on my laptop to running
on the hadoop cluster in about 10 seconds.

Assuming this runs correctly, you should see something like:

! 1

. 1

a 1

also 1

also 1

and 1

and 1

another 1

banana 1

but 1

file 1

file 1

file 1

has 1

has 1

is 1

is 1

more 1

some 1

some 1

text 1

text 1

the 1

this 1

this 1

this 1

with 1

word 1

words 1

words 1

In addition to just a map and reduce phase, hadoop also allows for a “combiner” phase. A com-
biner implements the reducer interface and runs in between the map phase and the reduce phase.
However, there’s a catch! Let’s run the WordCount example with a combiner and see if you can
figure out what the catch is.

Uncomment the line conf.setCombinerClass(WordCountReducer.class); in WordCount.java,
recompile, etc. and then rerun on the hadoop cluster. What is the combiner doing?

4



(Really think about it for a minute! Scroll down when you’re ready for the answer.)

5



The combiner phase is often referred to as a “mini-reduce” phase. It does run a full reduce (notice
above we just used our WordCountReducer), however, it only runs it locally on the same machine
that the map process was run. This means that it only reduces on some of the data. Why might
this be useful? Why is this useful for the word count example?

3 Inverted Index

Also in the demos directory online I have included another of the classic MapReduce examples
called LineIndexer. Download this file into the demos package in your Eclipse workspace and look
through the code to see if you can figure out what it does.

The LineIndexer example includes one thing we haven’t seen before: the use of the Reporter

object. Here we’re using it to get the split that we’re working on and then using that to get the
particular filename.

Once you think you’ve figure out how it works, set it up to run. To run this program, you’ll need
to change your call to hadoop to:

hadoop j a r demos . j a r demos . L ineIndexer

Look at the output. Did it do what you expected?

This function generates what is called an inverted index, that is a mapping from words to the
documents that they occur in. This is probably one of the most important structures that enables
web search (and many “index-based” search techniques). This was one of the early motivating
examples that led to the development of the MapReduce framework by Google.

A few things to think about:

• Could we use the LineIndexerReducer as a combiner for this example? Try it out and see
if you’re right. If you don’t think you can, you should either get the wrong answer, or more
likely, an error. If you do think you can, you should get the same output as before.

• In this example I have used a HashSet to filter out repeated entries. While this works, it
does require populating and clearing the hash set each time reduce is called. If the list of
documents that a word occurs in gets very large, this can be problematic (think web scale).

Can you think of an alternative using the MapReduce framework (Hint: it involves using a
two phase MapReduce.)?

4 grep

grep is a great command-line utility that allows you to search for text (and even regular expressions)
in files. If the text is found in a line in the file (or the regex matches), that entire line is printed
out. grep is very fast, however, if you had a very large file (or a number of very large files) it could
still take a long time.

6



In the demos directory online, I have included a basic version of grep implemented on MapReduce.
Download it and take a look at it. See if you can figure out how it works. There’s one new thing for
this program and that is passing information to map function. How is this done? The configure

function is called whenever a mapper/reducer is constructed.

Run the program on the cluster. Again, to do this you’ll have to call hadoop jar demos.jar and
then tell it to run the grep example. Notice this example take three command-line arguments (try
searching for “text” or “banana”).

Assuming all goes well, you should get an answer back. What are the numbers that get printed
before the lines?

Here are a few things to try:

• Can you use the reducer as a combiner? If so, try it out :)

• Modify the code so that it prints out both the number as well as the filename. Can you get
it to group the results by filename?

• Modify the code to take a regular expression to match, not just a word. java.util.regex

should be useful. To pass a regular expression as a parameter on the command-line you’ll
probably need to wrap it in quotes.

7


