

Admin

Midterm

Grading

Assignment 6

No office hours tomorrow from 10-11am (though I'll be around most of the rest of the day)

Basic Probability Theory: terminology

An $\ensuremath{\mathsf{experiment}}$ has a set of potential outcomes, e.g., throw a dice, "look at" another sentence

The **sample space** of an experiment is the set of all possible outcomes, e.g., {1, 2, 3, 4, 5, 6}

For machine learning the sample spaces can very large

Basic Probability Theory: terminology

An **event** is a subset of the sample space

Dice rolls

- 42
- {3, 6}
- even = {2, 4, 6}
- odd = {1, 3, 5}

Machine learning

- A particular feature has a particular values
- An example, i.e. a particular setting of features values
- Iabel = Chardonnay

Events

We're interested in probabilities of events

□ p({2})

- p(label=survived)
- p(label=Chardonnay)
- p(parasitic gap)
- p("Pinot" occurred)

Random variables

A random variable is a mapping from the sample space to a number (think events)

It represents all the possible values of something we want to measure in an experiment

For example, random variable, X, could be the number of heads for a coin

spaceHHHHHTHTHHTTTHHTHTTHTTTTX32212110

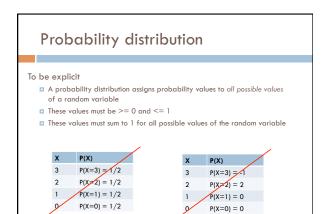
Really for notational convenience, since the event space can sometimes be irregular

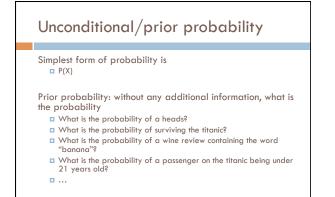
Random variables

We're interested in probability of the different values of a random variable

The definition of probabilities over *all* of the possible values of a random variable defines a **probability distribution**

space	ннн	HHT	HTH	HTT	тнн	THT	TTH	TTT
Х	3	2	2	1	2	1	1	0
		х	P	'(X)				
		3	Р	(X=3) = 1/	'8			
		2	Ρ	(X=2) = 3/	'8			
		1	Р	(X=1) = 3/	'8			
		0	Р	(X=0) = 1/	'8			





Joint distribution

We can also talk about probability distributions over multiple variables

P(X,Y)

probability of X and Y
a distribution over the cross product of possible values

MLPass P(MLPass)

		MLPass AND EngPass	P(MLPass,
e	0.89		EngPass)
e	0.11	true, true	.88
		true, false	.01
ass	P(EngPass)	false, true	.04
,	0.92	false, false	.07
se	0.08		

Joint distribution

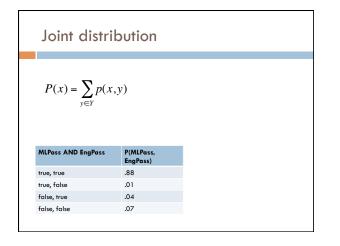
Still a probability distribution all values between 0 and 1, inclusive

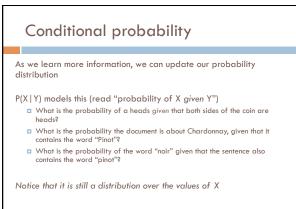
all values sum to 1

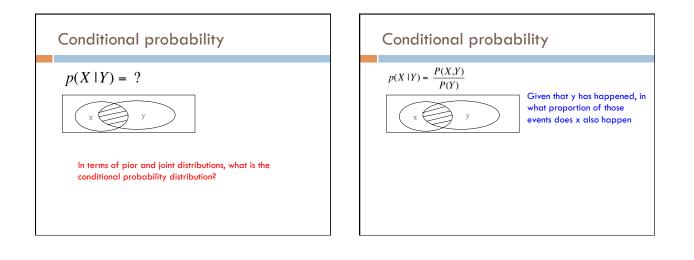
All questions/probabilities of the two variables can be calculate from the joint distribution

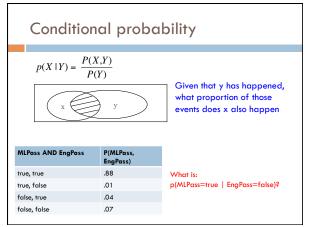
ALPass AND EngPass	P(MLPass, EngPass)	
rue, true	.88	What is P(ENGPass)?
true, false	.01	
false, true	.04	
false, false	.07	

Still a probability dist all values between all values sum to 1	0 and 1, inclusive	rariables can be calculate from
the joint distribution		
	P(MLPass, EngPass)	0.92
the joint distribution		
the joint distribution	EngPass)	How did you
the joint distribution MLPass AND EngPass true, true	EngPass) .88	

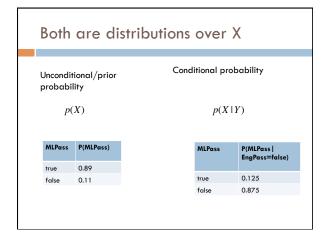


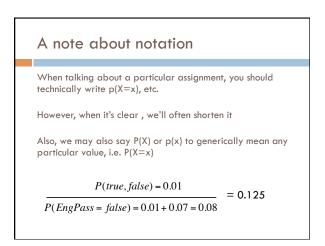


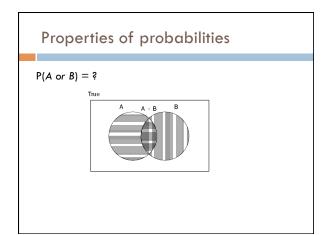


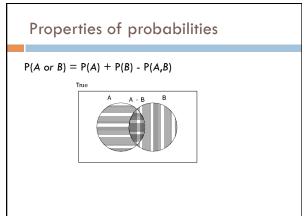


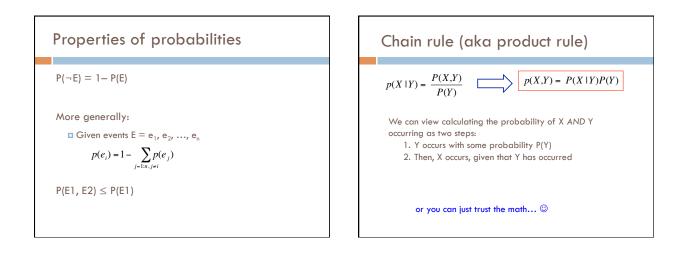
		P(X,Y)
MLPass AND EngPass	P(MLPass, EngPass)	$p(X \mid Y) = \frac{P(X,Y)}{P(Y)}$
true, true	.88	What is:
true, false	.01	p(MLPass=true EngPass=false)?
false, true	.04	
false, false	.07	
<i>H</i>	P(true, false) =	0.01 = 0.125











Chain rule

$$\begin{split} p(X,Y,Z) &= P(X \mid Y,Z)P(Y,Z) \\ p(X,Y,Z) &= P(X,Y \mid Z)P(Z) \\ p(X,Y,Z) &= P(X \mid Y,Z)P(Y \mid Z)P(Z) \\ p(X,Y,Z) &= P(Y,Z \mid X)P(X) \end{split}$$

$$p(X_1, X_2, ..., X_n) = ?$$

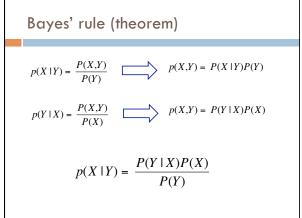
Applications of the chain rule
We saw that we could calculate the individual prior probabilities
using the joint distribution

$$p(x) = \sum_{y \in Y} p(x, y)$$
What if we don't have the joint distribution, but do have
conditional probability information:

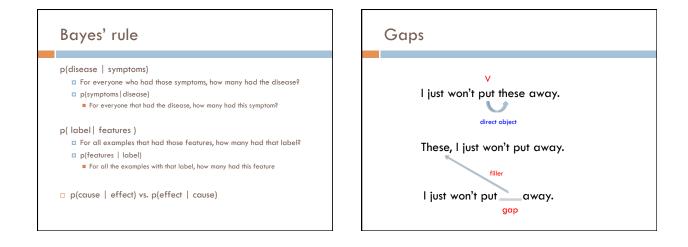
$$P(Y)$$

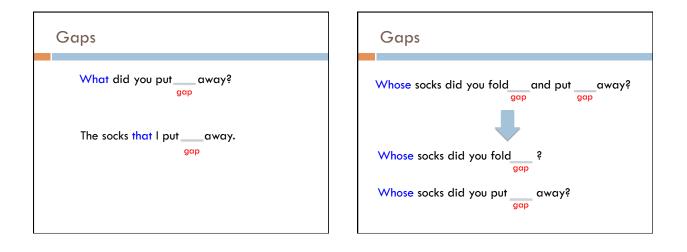
$$P(X | Y)$$

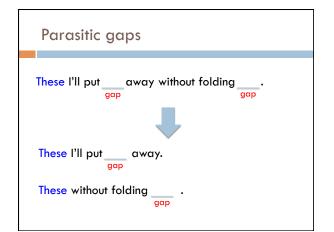
$$p(x) = \sum_{y \in Y} p(y)p(x | y)$$
This is called "summing over" or "marginalizing out" a variable



Bayes' rule
Allows us to talk about
$$P(Y | X)$$
 rather than $P(X | Y)$
Sometimes this can be more intuitive
Why?
 $p(X | Y) = \frac{P(Y | X)P(X)}{P(Y)}$







Parasitic gaps

http://literalminded.wordpress.com/2009/02/10/ dougs-parasitic-gap/

Frequency of parasitic gaps

Parasitic gaps occur on average in 1/100,000 sentences

Problem:

Maggie Louise Gal (aka "ML" Gal) has developed a machine learning approach to identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005. Suppose we run it on a sentence and the algorithm says it is a parasitic gap, what is the probability it actually is?

Prob of parasitic gaps

Maggie Louise Gal (aka "ML" Gal) has developed a machine learning approach to identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005. Suppose we run it on a sentence and the algorithm says it is a parasitic gap, what is the probability it actually is?

> G = gap T = test positive

What question do we want to ask?

Prob of parasitic gaps

Maggie Louise Gal (aka "ML" Gal) has developed a machine learning approach to identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005. Suppose we run it on a sentence and the algorithm says it is a parasitic gap, what is the probability it actually is?

> G = gap T = test positive

 $p(g \mid t) = ?$

