

Admin
Assignment 5

Midterm

Download from course web page when you're ready to take it

2 hours to complete

Must hand-in (or e-mail in) by 11:59pm Friday Oct. 18

Can use: class notes, your notes, the book, your assignments and Wikipedia.

You may **not** use: your neighbor, anything else on the web, etc.

What can be covered

Anything we've talked about in class

Anything in the reading (not these are not necessarily the same things)

Anything we've covered in the assignments

Midterm topics

Machine learning basics

- different types of learning problems
- feature-based machine learning
- data assumptions/data generating distribution

Classification problem setup

Proper experimentation

- train/dev/test
- evaluation/accuracy/training error
- optimizing hyperparameters

Midterm topics

Learning algorithms

- Decision trees
- K-NN
- Perceptron
- Gradient descent

Algorithm properties

- training/learning
- rational/why it works classifying
- hyperparameters
- avoiding overfitting
- algorithm variants/improvements

Midterm topics

Geometric view of data

- distances between examples
- decision boundaries

Features

- example features
- removing erroneous features/picking good features
- challenges with high-dimensional data
- feature normalization

Other pre-processing

outlier detection

Midterm topics

- Comparing algorithms
- n-fold cross validation
 - leave one out validation
 - bootstrap resampling
- t-test

imbalanced data

- evaluation precision/recall, F1, AUC
- subsampling
- oversampling
- weighted binary classifiers

Midterm topics

Multiclass classification

- Modifying existing approaches
- Using binary classifier
- OVA AVA
- Tree-based
- micro- vs. macro-averaging

Ranking

- using binary classifier
- using weighted binary classifier
- evaluation

Midterm topics

Gradient descent

- 0/1 loss
- Surrogate loss functions
- Convexity
- minimization algorithm
- regularization
- different regularizers
- p-norms

Misc

- good coding habits
- JavaDoc

Midterm general advice

2 hours goes by fast!

- Don't plan on looking everything up
- Lookup equations, algorithms, random details
- Make sure you understand the key concepts Don't spend too much time on any one question Skip questions you're stuck on and come back to them
- Watch the time as you go

Be careful on the T/F questions

For written questions

- think before you write
- make your argument/analysis clear and concise

Midterm topics

General ML concepts

- avoiding overfitting
- algorithm comparison
- algorithm/model bias
- model-based machine learning
- online vs. offline learning

Linear approaches so far

Perceptron:

- separable:
- finds some hyperplane that separates the data
- non-separable:
- will continue to adjust as it iterates through the examples
- final hyperplane will depend on which examples is saw recently

Gradient descent:

- separable and non-separable
- finds the hyperplane that minimizes the objective function (loss + regularization)

Which hyperplane is this?

Select the hyperplane with the largest margin where the points are classified correctly!

Setup as a constrained optimization problem:

 $\begin{array}{ll} \max_{w,b} & \mathrm{margin}(w,b) \\ \text{subject to:} & \\ y_i(w \cdot x_i + b) > 0 \quad \forall i & \text{what does this say?} \end{array}$

Maximizing the margin

$$\begin{split} \min_{\boldsymbol{w},\boldsymbol{b}} & \left\|\boldsymbol{w}\right\|\\ \text{subject to:} & \\ & y_i(\boldsymbol{w}\cdot\boldsymbol{x}_i+\boldsymbol{b}) \geq 1 \;\; \forall i \end{split}$$

Maximizing the margin is equivalent to minimizing ||w||! (subject to the separating constraints)

Maximizing the margin

The minimization criterion wants w to be as small as possible

 $\min_{w,b} |w|$

subject to: $y_i(w \cdot x_i + b) \ge 1 \quad \forall i$

> The constraints: 1. make sure the data is separable 2. encourages w to be larger (once the data is separable)

Maximizing the margin: the real problem $\begin{array}{c} \min_{w,b} \|w\|^2 \\ \text{subject to:} \\ y_i(w \cdot x_i + b) \geq 1 \quad \forall i \\ \end{array}$ Why the squared?

Support vector machine problem

$$\begin{split} \min_{\boldsymbol{w},\boldsymbol{b}} & \left\|\boldsymbol{w}\right\|^2 \\ \text{subject to:} \\ & y_i(\boldsymbol{w}\cdot\boldsymbol{x}_i + \boldsymbol{b}) \geq 1 \;\; \forall i \end{split}$$

This is a version of a quadratic optimization problem

Maximize/minimize a quadratic function

Subject to a set of linear constraints

Many, many variants of solving this problem (we'll see one in a bit)