
10/24/13	

1	

GRADIENT DESCENT

David Kauchak
CS 451 – Fall 2013

Admin

Assignment 5

Math background Linear models

A strong high-bias assumption is linear separability:
¤  in 2 dimensions, can separate classes by a line
¤  in higher dimensions, need hyperplanes

A linear model is a model that assumes the data is linearly
separable

10/24/13	

2	

Linear models

A linear model in n-dimensional space (i.e. n features)
is define by n+1 weights:

In two dimensions, a line:

In three dimensions, a plane:

In m-dimensions, a hyperplane

0 = w1 f1 +w2 f2 + b (where b = -a)

0 = w1 f1 +w2 f2 +w3 f3 + b

0 = b+ wj f jj=1

m
∑

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
 for each training example (f1, f2, …, fm, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wj:
 wj = wj + fj*label

 b = b + label

prediction = b+ wj f jj=1

m
∑

Which line will it find? Which line will it find?

Only guaranteed to find some
line that separates the data

10/24/13	

3	

Linear models

Perceptron algorithm is one example of a linear
classifier

Many, many other algorithms that learn a line (i.e. a
setting of a linear combination of weights)

Goals:
-  Explore a number of linear training algorithms
-  Understand why these algorithms work

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
 for each training example (f1, f2, …, fm, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wi:
 wi = wi + fi*label

 b = b + label

prediction = b+ wj f jj=1

m
∑

A closer look at why we got it wrong

0*−1+1*−1= −1

0* f1 +1* f2 =

w1 w2

We’d like this value to be positive
since it’s a positive value

(-1, -1, positive)

didn’t contribute,
but could have

contributed in the
wrong direction

decrease decrease

0 -> -1 1 -> 0

Intuitively these make sense
Why change by 1?
Any other way of doing it?

Model-based machine learning

1.  pick a model
-  e.g. a hyperplane, a decision tree,…
-  A model is defined by a collection of parameters

What are the parameters for DT? Perceptron?

10/24/13	

4	

Model-based machine learning

1.  pick a model
-  e.g. a hyperplane, a decision tree,…
-  A model is defined by a collection of parameters

2.  pick a criteria to optimize (aka objective function)

What criterion do decision tree learning and
perceptron learning optimize?

Model-based machine learning

1.  pick a model
-  e.g. a hyperplane, a decision tree,…
-  A model is defined by a collection of parameters

2.  pick a criteria to optimize (aka objective function)
-  e.g. training error

3.  develop a learning algorithm
-  the algorithm should try and minimize the criteria
-  sometimes in a heuristic way (i.e. non-optimally)
-  sometimes explicitly

Linear models in general

1.  pick a model

2.  pick a criteria to optimize (aka objective function)

These are the parameters we want to learn

0 = b+ wj f jj=1

m
∑

Some notation: indicator function

1 x[] =
1 if x = True
0 if x = False

!
"
#

$#

%
&
#

'#

Convenient notation for turning T/F answers into numbers/counts:

drinks_ to_bring_ for _ class = 1 x >= 21[]
x∈class
∑

10/24/13	

5	

Some notation: dot-product

Sometimes it is convenient to use vector notation

We represent an example f1, f2, …, fm as a single vector, x

Similarly, we can represent the weight vector w1, w2, …, wm as a single
vector, w

The dot-product between two vectors a and b is defined as:

a ⋅b = ajbj
j=1

m

∑

Linear models

1.  pick a model

2.  pick a criteria to optimize (aka objective function)

These are the parameters we want to learn

1 yi (w ⋅ xi + b) ≤ 0[]
i=1

n

∑

What does this equation say?

0 = b+ wj f jj=1

n
∑

0/1 loss function

1 yi (w ⋅ xi + b) ≤ 0[]
i=1

n

∑

distance = b+ wjx j = w ⋅ x
j=1

m

∑ + b distance from hyperplane

whether or not the
prediction and label agree

incorrect = yi (w ⋅ xi + b) ≤ 0

0/1 loss = 1 yi (w ⋅ xi + b) ≤ 0[]
i=1

n

∑ total number of mistakes,
aka 0/1 loss

Model-based machine learning

1.  pick a model

2.  pick a criteria to optimize (aka objective function)

3.  develop a learning algorithm

1 yi (w ⋅ xi + b) ≤ 0[]
i=1

n

∑

argminw,b 1 yi (w ⋅ xi + b) ≤ 0[]
i=1

n

∑ Find w and b that
minimize the 0/1 loss

0 = b+ wj f jj=1

m
∑

10/24/13	

6	

Minimizing 0/1 loss

argminw,b 1 yi (w ⋅ xi + b) ≤ 0[]
i=1

n

∑

How do we do this?
How do we minimize a function?
Why is it hard for this function?

Find w and b that
minimize the 0/1 loss

Minimizing 0/1 in one dimension

loss

1 yi (w ⋅ xi + b) ≤ 0[]
i=1

n

∑

Each time we change w such that the example is
right/wrong the loss will increase/decrease

w

Minimizing 0/1 over all w

loss

Each new feature we add (i.e. weights) adds
another dimension to this space!

w

1 yi (w ⋅ xi + b) ≤ 0[]
i=1

n

∑

Minimizing 0/1 loss

argminw,b 1 yi (w ⋅ xi + b) ≤ 0[]
i=1

n

∑

This turns out to be hard (in fact, NP-HARD L)

Find w and b that
minimize the 0/1 loss

Challenge:
-  small changes in any w can have large changes in

the loss (the change isn’t continuous)
-  there can be many, many local minima
-  at any give point, we don’t have much information to

direct us towards any minima

10/24/13	

7	

More manageable loss functions

loss

w

What property/properties do we want from our loss function?

More manageable loss functions

-  Ideally, continues (i.e. differentiable) so we get an
indication of direction of minimization

-  Only one minima

w

loss

Convex functions

Convex functions look something like:

One definition: The line segment between any
two points on the function is above the function

Surrogate loss functions

For many applications, we really would like to minimize
the 0/1 loss

A surrogate loss function is a loss function that provides an
upper bound on the actual loss function (in this case, 0/1)

We’d like to identify convex surrogate loss functions to
make them easier to minimize

Key to a loss function is how it scores the difference
between the actual label y and the predicted label y’

10/24/13	

8	

Surrogate loss functions

Ideas?
Some function that is a proxy for
error, but is continuous and convex

l(y, y ') =1 yy ' ≤ 0[]0/1 loss:

Surrogate loss functions

l(y, y ') =1 yy ' ≤ 0[]0/1 loss:

Hinge: l(y, y ') =max(0,1− yy ')

Exponential: l(y, y ') = exp(−yy ')

Squared loss: l(y, y ') = (y− y ')2

Why do these work? What do they penalize?

Surrogate loss functions

l(y, y ') =1 yy ' ≤ 0[]0/1 loss:

Squared loss: l(y, y ') = (y− y ')2
Hinge: l(y, y ') =max(0,1− yy ')

Exponential: l(y, y ') = exp(−yy ')

Model-based machine learning

1.  pick a model

2.  pick a criteria to optimize (aka objective function)

3.  develop a learning algorithm

exp(−yi (w ⋅ xi + b))
i=1

n

∑

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ Find w and b that
minimize the
surrogate loss

use a convex surrogate
loss function

0 = b+ wj f jj=1

m
∑

10/24/13	

9	

Finding the minimum

You’re blindfolded, but you can see out of the bottom of the
blindfold to the ground right by your feet. I drop you off
somewhere and tell you that you’re in a convex shaped valley
and escape is at the bottom/minimum. How do you get out?

Finding the minimum

How do we do this for a function?

w

loss

One approach: gradient descent

Partial derivatives give us the
slope (i.e. direction to move) in
that dimension

w

loss

One approach: gradient descent

Partial derivatives give us the
slope (i.e. direction to move) in
that dimension

Approach:

¤  pick a starting point (w)
¤  repeat:

n  pick a dimension
n  move a small amount in that

dimension towards decreasing loss
(using the derivative)

w

loss

10/24/13	

10	

One approach: gradient descent

Partial derivatives give us the
slope (i.e. direction to move) in
that dimension

Approach:

¤  pick a starting point (w)
¤  repeat:

n  pick a dimension
n  move a small amount in that

dimension towards decreasing loss
(using the derivative)

Gradient descent

¤  pick a starting point (w)
¤  repeat until loss doesn’t decrease in all dimensions:

n  pick a dimension
n  move a small amount in that dimension towards decreasing loss (using

the derivative)

wj = wj −η
d
dwj

loss(w)

What does this do?

Gradient descent

¤  pick a starting point (w)
¤  repeat until loss doesn’t decrease in all dimensions:

n  pick a dimension
n  move a small amount in that dimension towards decreasing loss (using

the derivative)

wj = wj −η
d
dwj

loss(w)

learning rate (how much we want to move in the error
direction, often this will change over time)

Some maths

=
d
dwj

exp(−yi (w ⋅ xi + b))
i=1

n

∑d
dwj

loss

= exp(−yi (w ⋅ xi + b))
d
dwji=1

n

∑ − yi (w ⋅ xi + b)

= −yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑

10/24/13	

11	

Gradient descent

¤  pick a starting point (w)
¤  repeat until loss doesn’t decrease in all dimensions:

n  pick a dimension
n  move a small amount in that dimension towards decreasing loss (using

the derivative)

wj = wj +η yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑

What is this doing?

Exponential update rule

wj = wj +η yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))

for each example xi:

Does this look familiar?

Perceptron learning algorithm!

repeat until convergence (or for some # of iterations):

 for each training example (f1, f2, …, fm, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wj:

 wj = wj + fj*label

 b = b + label

prediction = b+ wj f jj=1

m
∑

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))

wj = wj + xij yic
or

where c =η exp(−yi (w ⋅ xi + b))

The constant

c =η exp(−yi (w ⋅ xi + b))

When is this large/small?

prediction label learning rate

10/24/13	

12	

The constant

c =η exp(−yi (w ⋅ xi + b))

prediction label

If they’re the same sign, as the
predicted gets larger there update
gets smaller

If they’re different, the more
different they are, the bigger the
update

Perceptron learning algorithm!

repeat until convergence (or for some # of iterations):

 for each training example (f1, f2, …, fm, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wj:

 wj = wj + fj*label

 b = b + label

prediction = b+ wj f jj=1

m
∑

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))

wj = wj + xij yic
or

where c =η exp(−yi (w ⋅ xi + b))

Note: for gradient descent, we always update

Summary

Model-based machine learning:
-  define a model, objective function (i.e. loss function),

minimization algorithm

Gradient descent minimization algorithm
-  require that our loss function is convex
-  make small updates towards lower losses

Perceptron learning algorithm:
-  gradient descent
-  exponential loss function (modulo a learning rate)

