

A 1	•
Ad	min
/ .0	

Assignment 5

Math background

Perceptron learning algorithm

repeat until convergence (or for some # of iterations): for each training example ($f_1, f_2, ..., f_m$ label): $prediction = b + \sum_{j=1}^m w_j f_j$

if prediction * label \leq 0: // they don't agree for each w_i: $w_i = w_i + f_i^*$ label b = b +label

Linear models

Perceptron algorithm is one example of a linear classifier

Many, many other algorithms that learn a line (i.e. a setting of a linear combination of weights)

Goals:

- Explore a number of linear training algorithms
- Understand why these algorithms work

Perceptron learning algorithm

repeat until convergence (or for some # of iterations): for each training example ($f_1, f_2, ..., f_m$, label): $prediction = b + \sum_{i=1}^{m} w_i f_j$

if prediction * label ≤ 0 : // they don't agree for each w: $w_i = w_i + f_i^*$ label b = b +label

topmode e.g. a hyperplane, a decision tree,... A model is defined by a collection of param pick a criteria to optimize (aka objective function) e.g. training error develop a learning algorithm the algorithm should try and minimize the criteria sometimes in a heuristic way (i.e. non-optimally) sometimes explicitly

Some notation: indicator function

$$1[x] = \begin{cases} 1 & if \ x = True \\ 0 & if \ x = False \end{cases}$$

Convenient notation for turning T/F answers into numbers/counts:

$$drinks_to_bring_for_class = \sum_{x \in class} 1[x \ge 21]$$

Model-based machine learning

1. pick a model

$$0 = b + \sum_{j=1}^{m} w_j f_j$$

2. pick a criteria to optimize (aka objective function)

$$\sum_{i=1}^{n} \mathbb{1}\left[y_i(w \cdot x_i + b) \le 0\right]$$

 $\operatorname{argmin}_{w,b} \sum_{i=1}^{n} \mathbb{1} \left[y_i(w \cdot x_i + b) \le 0 \right]$

3. develop a learning algorithm

Surrogate loss functions

 $l(y,y') \!=\! 1 \big[yy' \!\leq\! 0 \big]$ 0/1 loss:

Ideas? Some function that is a proxy for error, but is continuous and convex

Surrogate loss functions		
0/1 loss:	$l(y, y') = 1 \left[yy' \le 0 \right]$	
Hinge:	$l(y, y') = \max(0, 1 - yy')$	
Exponential:	$l(y, y') = \exp(-yy')$	
Squared loss:	$l(y, y') = (y - y')^2$	
Why do these work? What do they penalize?		

blindfold to the ground right by your feet. I drop you off somewhere and tell you that you're in a convex shaped valley and escape is at the bottom/minimum. How do you get out?

One approach: gradient descent

Partial derivatives give us the slope (i.e. direction to move) in that dimension

<section-header> One approach: gradient descent Partial derivatives give us the slope (i.e. direction to move) in that dimension Approach: pick a starting point (w). repeat: pick a dimension <lu>pick a dimension <lu>pick a dimension to that dimension towards decreasing loss (using the derivative)

10

Gradient descent

- pick a starting point (w)
- repeat until loss doesn't decrease in all dimensions:
 pick a dimension
- move a small amount in that dimension towards decreasing loss (using the derivative)

$$w_j = w_j + \eta \sum_{i=1}^{n} y_i x_{ij} \exp(-y_i (w \cdot x_i + b))$$

What is this doing?

$$w_j = w_j + \eta \sum_{i=1}^n y_i x_{ij} \exp(-y_i (w \cdot x_i + b))$$

for each example x_i :

 $w_j = w_j + \eta y_i x_{ij} \exp(-y_i (w \cdot x_i + b))$

Does this look familiar?

Perceptron learning algorithm! repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_m$ label): $prediction = b + \sum_{j=1}^{m} w_j f_j$ if prediction * label ≤ 0 : // they don't agree for each w_j : $w_j = w_j + f_j^*$ label b = b + label

$$w_j = w_j + \eta y_i x_{ij} \exp(-y_i (w \cdot x_i + b))$$

or

$$w_j = w_j + x_{ij}y_ic$$
 where $c = \eta \exp(-y_i(w \cdot x_i + b))$

Summary

Model-based machine learning:

 define a model, objective function (i.e. loss function), minimization algorithm

Gradient descent minimization algorithm

- require that our loss function is convex
- make small updates towards lower losses

Perceptron learning algorithm:

- gradient descent
- exponential loss function (modulo a learning rate)