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GRADIENT DESCENT 

David Kauchak 
CS 451 – Fall 2013 

Admin 

Assignment 5 

Math background Linear models 

A strong high-bias assumption is linear separability: 
¤  in 2 dimensions, can separate classes by a line 
¤  in higher dimensions, need hyperplanes 

 
A linear model is a model that assumes the data is linearly 
separable 
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Linear models 

A linear model in n-dimensional space (i.e. n features) 
is define by n+1 weights: 
 
In two dimensions, a line: 
 
In three dimensions, a plane: 
 
In m-dimensions, a hyperplane 

0 = w1 f1 +w2 f2 + b (where b = -a) 

0 = w1 f1 +w2 f2 +w3 f3 + b

0 = b+ wj f jj=1

m
∑

Perceptron learning algorithm 

repeat until convergence (or for some # of iterations): 
   for each training example (f1, f2, …, fm, label): 

       
 

      if prediction * label ≤ 0:  // they don’t agree 

         for each wj: 
           wj = wj + fj*label 

         b = b + label 

prediction = b+ wj f jj=1

m
∑

Which line will it find? Which line will it find? 

Only guaranteed to find some 
line that separates the data 
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Linear models 

Perceptron algorithm is one example of a linear 
classifier 
 
Many, many other algorithms that learn a line (i.e. a 
setting of a linear combination of weights) 
 
Goals: 
-  Explore a number of linear training algorithms 
-  Understand why these algorithms work 

Perceptron learning algorithm 

repeat until convergence (or for some # of iterations): 
   for each training example (f1, f2, …, fm, label): 

       
 

      if prediction * label ≤ 0:  // they don’t agree 

         for each wi: 
           wi = wi + fi*label 

         b = b + label 

prediction = b+ wj f jj=1

m
∑

A closer look at why we got it wrong 

0*−1+1*−1= −1

0* f1 +1* f2 =

w1 w2 

We’d like this value to be positive 
since it’s a positive value 

(-1, -1, positive) 

didn’t contribute, 
but could have 

contributed in the 
wrong direction 

decrease decrease 

0 -> -1 1 -> 0 

Intuitively these make sense 
Why change by 1? 
Any other way of doing it? 
 

Model-based machine learning 

1.  pick a model 
-  e.g. a hyperplane, a decision tree,… 
-  A model is defined by a collection of parameters 

What are the parameters for DT?  Perceptron? 
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Model-based machine learning 

1.  pick a model 
-  e.g. a hyperplane, a decision tree,… 
-  A model is defined by a collection of parameters 

2.  pick a criteria to optimize (aka objective function) 
 

What criterion do decision tree learning and 
perceptron learning optimize?  

Model-based machine learning 

1.  pick a model 
-  e.g. a hyperplane, a decision tree,… 
-  A model is defined by a collection of parameters 

2.  pick a criteria to optimize (aka objective function) 
-  e.g. training error 

3.  develop a learning algorithm 
-  the algorithm should try and minimize the criteria 
-  sometimes in a heuristic way (i.e. non-optimally) 
-  sometimes explicitly 

 

Linear models in general 

1.  pick a model 
 
 
 
 
2.  pick a criteria to optimize (aka objective function) 

These are the parameters we want to learn 

0 = b+ wj f jj=1

m
∑

Some notation: indicator function 

1 x[ ] =
1 if  x = True
0 if  x = False

!
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#
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%
&
#

'#

Convenient notation for turning T/F answers into numbers/counts: 

drinks_ to_bring_ for _ class = 1 x >= 21[ ]
x∈class
∑
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Some notation: dot-product 

Sometimes it is convenient to use vector notation 
 

We represent an example f1, f2, …, fm as a single vector, x 

 

Similarly, we can represent the weight vector w1, w2, …, wm as a single 
vector, w 
 

The dot-product between two vectors a and b is defined as: 

a ⋅b = ajbj
j=1

m

∑

Linear models 

1.  pick a model 
 
 
 
 
2.  pick a criteria to optimize (aka objective function) 

These are the parameters we want to learn 

1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

What does this equation say? 

0 = b+ wj f jj=1

n
∑

0/1 loss function 

1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

distance = b+ wjx j = w ⋅ x
j=1

m

∑ + b distance from hyperplane 

whether or not the 
prediction and label agree 

incorrect = yi (w ⋅ xi + b) ≤ 0

0/1 loss = 1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑ total number of mistakes, 
aka 0/1 loss 

Model-based machine learning 

1.  pick a model 

2.  pick a criteria to optimize (aka objective function) 

3.  develop a learning algorithm 
 

1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

argminw,b 1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑ Find w and b that 
minimize the 0/1 loss 

0 = b+ wj f jj=1

m
∑
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Minimizing 0/1 loss 

argminw,b 1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

How do we do this? 
How do we minimize a function? 
Why is it hard for this function? 

Find w and b that 
minimize the 0/1 loss 

Minimizing 0/1 in one dimension 

loss 

1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

Each time we change w such that the example is 
right/wrong the loss will increase/decrease 

w 

Minimizing 0/1 over all w 

loss 

Each new feature we add (i.e. weights) adds 
another dimension to this space! 

w 

1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

Minimizing 0/1 loss 

argminw,b 1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

This turns out to be hard (in fact, NP-HARD L) 

Find w and b that 
minimize the 0/1 loss 

Challenge:  
-  small changes in any w can have large changes in 

the loss (the change isn’t continuous) 
-  there can be many, many local minima 
-  at any give point, we don’t have much information to 

direct us towards any minima 
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More manageable loss functions 

loss 

w 

What property/properties do we want from our loss function? 

More manageable loss functions 

-  Ideally, continues (i.e. differentiable) so we get an 
indication of direction of minimization 

-  Only one minima 

w 

loss 

Convex functions 

Convex functions look something like: 

One definition: The line segment between any 
two points on the function is above the function 

Surrogate loss functions 

For many applications, we really would like to minimize 
the 0/1 loss 
 
A surrogate loss function is a loss function that provides an 
upper bound on the actual loss function (in this case, 0/1) 
 
We’d like to identify convex surrogate loss functions to 
make them easier to minimize 
 
Key to a loss function is how it scores the difference 
between the actual label y and the predicted label y’ 
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Surrogate loss functions 

Ideas? 
Some function that is a proxy for 
error, but is continuous and convex 

l(y, y ') =1 yy ' ≤ 0[ ]0/1 loss: 

Surrogate loss functions 

l(y, y ') =1 yy ' ≤ 0[ ]0/1 loss: 

Hinge: l(y, y ') =max(0,1− yy ')

Exponential: l(y, y ') = exp(−yy ')

Squared loss: l(y, y ') = (y− y ')2

Why do these work?  What do they penalize? 

Surrogate loss functions 

l(y, y ') =1 yy ' ≤ 0[ ]0/1 loss: 

Squared loss: l(y, y ') = (y− y ')2
Hinge: l(y, y ') =max(0,1− yy ')

Exponential: l(y, y ') = exp(−yy ')

Model-based machine learning 

1.  pick a model 

2.  pick a criteria to optimize (aka objective function) 

3.  develop a learning algorithm 
 

exp(−yi (w ⋅ xi + b))
i=1

n

∑

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ Find w and b that 
minimize the 
surrogate loss 

use a convex surrogate 
loss function 

0 = b+ wj f jj=1

m
∑
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Finding the minimum 

You’re blindfolded, but you can see out of the bottom of the 
blindfold to the ground right by your feet.  I drop you off 
somewhere and tell you that you’re in a convex shaped valley 
and escape is at the bottom/minimum.  How do you get out? 

Finding the minimum 

How do we do this for a function? 

w 

loss 

One approach: gradient descent 

Partial derivatives give us the 
slope (i.e. direction to move) in 
that dimension 

w 

loss 

One approach: gradient descent 

Partial derivatives give us the 
slope (i.e. direction to move) in 
that dimension 
 
Approach: 

¤  pick a starting point (w) 
¤  repeat: 

n  pick a dimension 
n  move a small amount in that 

dimension towards decreasing loss 
(using the derivative) 

w 

loss 
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One approach: gradient descent 

Partial derivatives give us the 
slope (i.e. direction to move) in 
that dimension 
 
Approach: 

¤  pick a starting point (w) 
¤  repeat: 

n  pick a dimension 
n  move a small amount in that 

dimension towards decreasing loss 
(using the derivative) 

Gradient descent 

¤  pick a starting point (w) 
¤  repeat until loss doesn’t decrease in all dimensions: 

n  pick a dimension 
n  move a small amount in that dimension towards decreasing loss (using 

the derivative) 

wj = wj −η
d
dwj

loss(w)

What does this do? 

Gradient descent 

¤  pick a starting point (w) 
¤  repeat until loss doesn’t decrease in all dimensions: 

n  pick a dimension 
n  move a small amount in that dimension towards decreasing loss (using 

the derivative) 

wj = wj −η
d
dwj

loss(w)

learning rate (how much we want to move in the error 
direction, often this will change over time) 

Some maths 

=
d
dwj

exp(−yi (w ⋅ xi + b))
i=1

n

∑d
dwj

loss

= exp(−yi (w ⋅ xi + b))
d
dwji=1

n

∑ − yi (w ⋅ xi + b)

= −yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑
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Gradient descent 

¤  pick a starting point (w) 
¤  repeat until loss doesn’t decrease in all dimensions: 

n  pick a dimension 
n  move a small amount in that dimension towards decreasing loss (using 

the derivative) 

wj = wj +η yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑

What is this doing? 

Exponential update rule 

wj = wj +η yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))

for each example xi: 

Does this look familiar? 

Perceptron learning algorithm! 

repeat until convergence (or for some # of iterations): 

   for each training example (f1, f2, …, fm, label): 

       
 

      if prediction * label ≤ 0:  // they don’t agree 

         for each wj: 

           wj = wj + fj*label 

         b = b + label 

prediction = b+ wj f jj=1

m
∑

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))

wj = wj + xij yic
or 

where  c =η exp(−yi (w ⋅ xi + b))

The constant 

c =η exp(−yi (w ⋅ xi + b))

When is this large/small? 

prediction label learning rate 
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The constant 

c =η exp(−yi (w ⋅ xi + b))

prediction label 

If they’re the same sign, as the 
predicted gets larger there update 
gets smaller 
 
If they’re different, the more 
different they are, the bigger the 
update 

Perceptron learning algorithm! 

repeat until convergence (or for some # of iterations): 

   for each training example (f1, f2, …, fm, label): 

       
 

      if prediction * label ≤ 0:  // they don’t agree 

         for each wj: 

           wj = wj + fj*label 

         b = b + label 

prediction = b+ wj f jj=1

m
∑

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))

wj = wj + xij yic
or 

where  c =η exp(−yi (w ⋅ xi + b))

Note: for gradient descent, we always update 
 

Summary 

Model-based machine learning: 
-  define a model, objective function (i.e. loss function), 

minimization algorithm 

Gradient descent minimization algorithm 
-  require that our loss function is convex 
-  make small updates towards lower losses 

Perceptron learning algorithm: 
-  gradient descent 
-  exponential loss function (modulo a learning rate) 


