MULTICLASS CONTINUED AND RANKING

David Kauchak CS 451 – Fall 2013 Admin

Assignment 4

Course feedback

Midterm

Java tip for the day

private vs. public vs. protected

Debugging tips

OVA: classify

Classify:

- □ If classifier doesn't provide confidence (this is rare) and there is ambiguity, pick one of the ones in conflict
- Otherwise:
 - pick the most confident positive
 - if none vote positive, pick least confident negative

- Otherwise:
- pick the most confident positive
- if none vote positive, pick *least* confident negative

How do we calculate this for the perceptron?

OVA: classify, perceptron

Classify:

- □ If classifier doesn't provide confidence (this is rare) and there is ambiguity, pick majority in conflict
- Otherwise:
 - pick the most confident positive
 - if none vote positive, pick least confident negative

prediction = $b + \sum_{i=1}^{n} w_i f_i$

Distance from the hyperplane

Approach 2: All vs. all (AVA)

Training:

For each pair of labels, train a classifier to distinguish between them

for i = 1 to number of labels:

- for k = i+1 to number of labels:
- train a classifier to distinguish between label; and label.
 - create a dataset with all examples with label, labeled positive and all examples with label, labeled negative
 - train classifier on this subset of the data

AVA classify

Take a weighted vote based on confidence

 $y = f_{ik}(e)$

 $score_i += y$

score_k -= y

- If y is positive, classifier thought it was of type j:
- raise the score for j
- lower the score for k
- if y is negative, classifier thought it was of type k:
- lower the score for $\boldsymbol{\mathsf{j}}$
- raise the score for k

OVA vs. AVA

Train/classify runtime?

Error? Assume each binary classifier makes an error with probability \mathcal{E}

OVA vs. AVA

Train time:

AVA learns more classifiers, however, they're trained on much smaller data this tends to make it faster if the labels are equally balanced

Test time:

AVA has more classifiers

Error (see the book for more justification):

- AVA trains on more balanced data sets
- AVA tests with more classifiers and therefore has more chances for errors
- Theoretically:
- -- OVA: ɛ (number of labels -1) -- AVA: 2 ε (number of labels -1)

Approach 3: Divide and conquer

How should we evaluate?

Multiclass evaluation Multiclass summary If using a binary classifier, the most common thing to prediction label do is OVA apple orange Otherwise, use a classifier that allows for multiple orange orange labels: apple apple DT and k-NN work reasonably well We'll see a few more in the coming weeks that will banana pineapple often work better banana banana pineapple pineapple

Mult	Multiclass evaluation imbalanced data									
Ś	label _{apple}	prediction _{orange}								
é	apple	apple	Any problems?							
	banana	pineapple	Data imbalance!							
	banana	banana								
	pineapple	pineapple								

Macroaveraging vs. microaveraging

microaveraging: average over examples (this is the "normal" way of calculating)

macroaveraging: calculate evaluation score (e.g. accuracy) for each label, then average over labels

What effect does this have? Why include it?

Macroaveraging vs. microaveraging

microaveraging: average over examples (this is the "normal" way of calculating)

macroaveraging: calculate evaluation score (e.g. accuracy) for each label, then average over labels

Puts more weight/emphasis on rarer labelsAllows another dimension of analysis

Macroaveraging vs. microaveraging										
6	label	prediction	microaveraging: average over examples							
	apple	orange								
	orange	orange	macroaveraging: calculate							
	apple	apple	evaluation score (e.g. accuracy) for each label,							
	banana	pineapple	then average over labels							
\checkmark	banana	banana								
	pineapple	pineapple								

(Confusion matrix										
entry (<i>i</i> , <i>j</i>) represents the number of examples with label <i>i</i> that were predicted to have label <i>j</i> another way to understand both the data and the classifier											
		Classic	Country	Disco	Hiphop	Jazz	Rock				
	Classic	86	2	0	4	18	1				
	Country	1	57	5	1	12	13				
	Disco	0	6	55	4	0	5				
	Hiphop	0	15	28	90	4	18				
	Jazz	7	1	0	0	37	12				
	Rock	6	19	11	0	27	48				

Multiclass vs. multilabel

Multiclass: each example has one label and exactly one label

Multilabel: each example has **zero or more** labels. Also called annotation

Multilabel applications?

Multilabel

Image annotation

Document topics

Labeling people in a picture

Medical diagnosis

Multiclass vs. multilabel

Multiclass: each example has one label and exactly one label

Multilabel: each example has **zero or more** labels. Also called annotation

Which of our approaches work for multilabel?