
CS451 - Assignment 6

A Gradient Descent Into Madness
Due: Sunday, October 27 by 11:59pm

For this assignment we’re going to try out a few gradient descent variants (including the SVM).
The amount of code you’ll need to write for this will be pretty minimal.

1 High-level requirements

• Implement the gradient descent algorithm

• Your approach will need to support two loss functions: hinge loss and exponential loss

• Your approach will need to support three regularization type: none, L1 and L2

• You will provide a short writeup that includes:

– an argument that your implementation is correct. This can be of the form of examining
text snippets with justification and/or showing experimental results.

– at least one experimental result

2 Implementation Requirements

To get you started I have included some starter code at:

http://www.cs.middlebury.edu/~dkauchak/classes/cs451/assignments/assign6/assign6-starter.tar.gz

1

This is basically the same starter code as assignment 5 except I have add the KNNClassifier (so
that everything compiles file) and I have included a GradientDescentClassifier. This file is
simply a copy of the PerceptronClassifier file with the addition of a few constants. This should
serve as your starting point.

Implement a gradient descent classifier. Your implementation must:

- support a zero parameter constructor. By default you should use exponential loss, no regu-
larization, λ = 1 and η = 1

- include a method setLoss that takes an int and selects the loss function to use

- include a method setRegularization that takes an int and selects the regularization method
to use

- include a method setLambda that takes a double and sets the lambda to use

- include a method setEta that takes a double and sets the eta to use (Note, in practice we’d
use some sort of schedule of etas, e.g. one for each iteration, however, to keep it simple we’ll
just have a constant learning rate.)

- support training and testing based on these parameters

3 Writeup

In addition to your code, include a writeup (in some reasonable file format) that includes two
sections: Algorithm Correctness and Experimentation. Because of the small amount of
coding required for this assignment, the writeup will be a non-trivial part of your grade, so make
sure to devote sufficient time to this.

Algorithm Correctness

Include a short (1 page) justification of why your implementation of the hinge loss with L2 regu-
larization is correct. This could include snippets of code, along with an explanation, and/or short
experimental results, e.g. incremental output of a small problem. You will be graded based on how
convincing and thorough your argument is.

Experimentation

Run one experiment that highlights something interesting about the algorithm, include the resulting
data, and include a 2-3 sentence explanation/analysis. For example, you could investigate the
optimal λ/η for one of the variants on one of the data sets, or you could investigate how the
different loss/regularization approaches work (though pick some reasonable lambda). Plan on
spending around an hour playing around with this. You will be graded based on the quality of your
experimental setup and your presentation.

2

4 Extra Credit

For those who would like to experiment (and push themselves) a bit more (and of course, get a bit
of extra credit) you can try out some of these extra credit options. If you try out these options,
include an extra file called extra.txt that describes what extra credit you did.

• Allow for an η schedule rather than just a single constant. I’ll let you be creative about the
best way to do this, but please just create a new copy of your classifier code rather than
trying to alter the existing code.

• Add additional regularization or loss functions. If you do this, add appropriate constants for
selecting these.

• Do additional experimentation and include it in the write-up. The amount earned will be
based on how much effort you put in and how creative the experiment is.

5 When You’re Done

Make sure that your code compiles, that your files are named as specified and that you have followed
the specifications exactly (i.e. method names, number of parameters, etc.).

Create a directory with your last name, followed by the assignment number, for example, for this
assignment mine would be kauchak6. If you worked with a partner, put both last names.

Inside this directory, create a code directory and copy all of your code into this directory, main-
taining the package structure.

Finally, also include your writeup file.

tar then gzip this folder and submit that file on the submission page on the course web page.

Commenting and code style

Your code should be commented appropriately (though you don’t need to go overboard). The most
important things:

• Your name (or names) and the assignment number should be at the top of each file

• Each class and method should have an appropriate JavaDoc

• If anything is complicated, it should include some comments.

There are many possible ways to approach this problem, which makes code style and comments
very important here so that I can understand what you did. For this reason, you will lose points
for poorly commented or poorly organized code.

3

