CS150 - Lab Prep 4
Due: Friday Oct. 4, at the beginning of class

For our lab, we're going to be writing a program that randomly generates math problems (i.e. math
expressions like 3¥4+10) and counts how many of these questions a person can answer correctly in
a fixed amount of time (say 30 seconds).

Half of this lab prep is playing with a few things and there is nothing to hand in for these parts
uessing game”, emo” an nfinite loops”). For the “Timing” section, answer the two
“G 3 79 “A d 99 d “I ﬁ '.t 1 7 F th “T' 3 0 .t' th t
questions (labeled 1 and 2) and bring your answers on a piece of paper to class on Friday.

Guessing game

Look at the class notes for Wednesday on the course web page and look at the number_guessing game
function. Play with it a few times and then look at the code and make sure you understand what
it is doing. If you don’t send me an e-mail or come see me in my office hours.

I’'ve also provided a function number_guessing game2, which behaves the same way, but is struc-
tured a bit differently. Look at this variant and make sure you understand it as well. Either way
of implementing this function is fine.

A demo

(Optional, but strongly suggested)

To get you familiar with what you’ll be implementing for your assignment this week, I’ve provided
you with an example program to run. Play with it a little bit before Friday.

Note this will only work in the Mac lab, so you’ll need to poke your head in MBH
505. To run it:

e Run Terminal. In your dock at the bottom of the screen there should be an icon that looks
like:




Click on it. If you can’t find it in your dock, type command + space_bar to open the search
in the upper right, then search for “Terminal” and select it that way.

e In the Terminal window type:
python /home/dkauchak/PUBLIC/cs150/assignment4/mathwhiz.pyc

This should execute the example program in the terminal window. If you ever want to exit
or quit early, you can type control + c.

Timing

Python has a module call time that has a variety of functionality for asking questions about time,
dates, etc. If you're curious, you can check out the documentation at:

http://docs.python.org/library/time.html

The time function

In this lab, we’ll be playing with the time function. The time function gives the number of seconds
that have elapsed since a particular date and time. For example, you can type:

import time
print time.time()

and you will get the number of seconds elapsed since the starting date.

1. Figure out what date the clock started counting on. To do this, convert the number of seconds
that have elapsed into the number of days that have elapsed. Then, go to:

http://wuw.timeanddate.com/date/dateadd.html

and use this online tool to subtract that number of days from the current date.

We won’t be using it right now, but there are other functions that allow you to get the current
time in a more human friendly way. You can look at the documentation for the time module for
more information.

Timing user feedback

Elapsed time from an arbitrary time/data may seem like a weird measurement, however, one useful
thing we can do easily is figure out how long a particular activity takes. We record how many
seconds have elapsed in a variable using time(), then, at some later point after some time has
elapsed, record the time again using time () in another variable. If we take the difference between
these two time readings, we get the time elapsed.



2. Write a set of statements that uses raw_input to ask the user for their name, times how long
it takes them to enter their name in seconds, then prints out how many seconds elapsed.
You'll have to record the time before and after the user enters the text.

Infinite loops

for loops run for a fixed number of iterations and we don’t have to worry about them not finishing.
With a while loop though, if the bool expression we’re looping on never becomes False then the
loop will never end. For example, the following is an infinite loop and will NEVER end:

while True:
print "hello"

In WingIDE, create a new file and enter this text, then run the program. What happens? What
should happen? (rhetorical questions)

Unfortunately, one of the misleading behaviors of Wing (not Python) is that if it enters an infinite
loop, the program appears to have frozen. If this happens, the easiest way to “stop” it is to go
under “Options” in the Python shell and select “Restart Shell”.

It would be much more useful for debugging to actually print out the infinite “hello”s so that you
can figure out where the problem is. If instead of running it with the green arrow you use the
debug button:

¥

You'll see the output continuously displayed in the Debug I/O window in the bottom left. To stop
the debugging run, click on the “stop” button next to the debug button.

If you’re program ever hangs during this lab, it’s likely an infinite loop. Use this debugging technique
to help you figure out where it’s coming from.



