Anomalous State of Knowledge

Basic paradox:
Information needs arise because the user doesn’t know something

Search systems are designed to satisfy these needs, but the user needs to know what he is looking for

However, if the user knows what he’s looking for, there may not be a need to search in the first place

Administrative

- computer use in class 😊
- hw3 out
- assignment 3 out later today
- due date?
What should be returned?

Google

![Google search results for apples]

What is actually returned...

![Actual search results for apples]

Similar pages

Google

![Google search results for sarah brightman]

Relevance feedback

User provides feedback on relevance of documents in the initial set of results:

- User issues a query
- The user marks some results as relevant or non-relevant
- The system computes a better results based on the feedback
- May iterate

What did “similar pages” do?

Does this solve our problem?
An example

Image search engine:
http://vision.ece.ucsb.edu/multimedia/

Results for initial query

Relevance Feedback

Results after Relevance Feedback
Ideas?

For ranked models we represent our query as a vector of weights, which we view as a point in a high dimensional space.

We want to bias the query towards documents that the user selected (the “relevant documents”)

We want to bias the query away from documents that the user did not select (the “non-relevant documents”)

Relevance feedback

How can we “move” the query?
The Rocchio algorithm uses the vector space model to pick a better query.

Rocchio seeks the query \(q_{\text{opt}} \) that maximizes the difference between the query similarity with the relevant set of documents \((C_r) \) vs. the non-relevant set of documents \((C_{nr}) \):

\[
q_{\text{opt}} = \arg \max_q [s_i(q, C_r) - s_i(q, C_{nr})]
\]

Centroid

The centroid is the center of mass of a set of points:

\[
\bar{x}(C) = \frac{1}{|C|} \sum_d d
\]

where

Rocchio Algorithm

Find the new query by moving it towards the centroid of the relevant queries and away from the centroid of the non-relevant queries:

\[
q_{\text{opt}} = \frac{1}{|C_r|} \sum_{d_j \in C_r} \bar{d}_j - \frac{1}{|C_{nr}|} \sum_{d_j \in C_{nr}} \bar{d}_j
\]

Rocchio in action

- query vector = original query vector
 - relevant vector
 - non-relevant vector

Original query: 1 2 3 4 5
Relevant centroid: 3 4 5 (+)
Non-relevant centroid: 1 2 3 (-)
New query: ?
Rocchio in action

query vector = original query vector
+ relevant vector
– non-relevant vector

<table>
<thead>
<tr>
<th>Original query</th>
<th>Relevant centroid</th>
<th>Non-relevant centroid</th>
<th>New query</th>
</tr>
</thead>
<tbody>
<tr>
<td>[8 4 0 8 0]</td>
<td>[4 2 0 4] (+)</td>
<td>[4 2 0 4] (-)</td>
<td>[8 4 0 8 0]</td>
</tr>
</tbody>
</table>

source: Fernando Diaz
Results after relevance feedback

Any problems with this?

\[\tilde{q}_{opt} = \frac{1}{|C_r|} \sum_{d_j \in C_r} \tilde{d}_j - \frac{1}{|C_{nr}|} \sum_{d_j \in C_{nr}} \tilde{d}_j \]

C_r and C_{nr} are all the relevant and non-relevant documents.

We get a biased sample!

Rocchio 1971 Algorithm (SMART)

Used in practice:

\[\tilde{q}_m = \alpha \tilde{q}_0 + \beta \frac{1}{|D_r|} \sum_{d_j \in D_r} \tilde{d}_j - \gamma \frac{1}{|D_{nr}|} \sum_{d_j \in D_{nr}} \tilde{d}_j \]

- \(D_r \) = set of known relevant doc vectors
- \(D_{nr} \) = set of known irrelevant doc vectors
- \(\tilde{q}_0 \) = modified query vector
- \(q_0 \) = original query vector
- \(\alpha, \beta, \gamma \) = weights (hand-chosen or set empirically)

New query moves toward relevant documents and away from irrelevant documents.

Relevance Feedback in vector spaces

Relevance feedback can improve recall and precision.

How might it improve each of these?

Which do you think it’s more likely to improve?
Relevance Feedback in vector spaces

Relevance feedback can improve recall and precision

Relevance feedback is most useful for increasing recall in situations where recall is important
- Users can be expected to review results and to take time to iterate

Positive feedback is more valuable than negative feedback (so, set $\gamma < \beta$; e.g., $\gamma = 0.25$, $\beta = 0.75$).

Many systems only allow positive feedback ($\gamma = 0$).

Another example

Initial query: New space satellite applications

+ 1. 0.539, 08/13/91, NASA Hasn’t Scrapped Imaging Spectrometer
+ 2. 0.533, 07/09/91, NASA Scratches Environment Gear From Satellite Plan
+ 3. 0.528, 04/04/91, Science Panel Backs NASA Satellite Plan, But Urges Launches of Smaller Probes
+ 4. 0.526, 06/09/91, A NASA Satellite Project Accomplishes Incredible Feat: Staying Within Budget
+ 5. 0.525, 07/24/90, Scientist Who Exposed Global Warming Proposes Satellites for Climate Research
+ 6. 0.524, 08/22/90, Report Provides Support for the Critics Of Using Big Satellites to Study Climate
+ 7. 0.516, 04/13/87, Arianespace Receives Satellite Launch Pact From Telesat Canada
+ 8. 0.509, 12/02/87, Telecommunications Tale of Two Companies

User then marks relevant documents with “+”.

Expanded query after relevance feedback

<table>
<thead>
<tr>
<th>Word</th>
<th>Term Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.074</td>
<td>new</td>
</tr>
<tr>
<td>30.816</td>
<td>satellite</td>
</tr>
<tr>
<td>5.991</td>
<td>nasa</td>
</tr>
<tr>
<td>4.196</td>
<td>launch</td>
</tr>
<tr>
<td>3.516</td>
<td>instrument</td>
</tr>
<tr>
<td>3.004</td>
<td>bundespost</td>
</tr>
<tr>
<td>2.790</td>
<td>rocket</td>
</tr>
<tr>
<td>2.003</td>
<td>broadcast</td>
</tr>
<tr>
<td>0.836</td>
<td>oil</td>
</tr>
</tbody>
</table>

Results for expanded query

<table>
<thead>
<tr>
<th>Word</th>
<th>Term Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.074</td>
<td>new</td>
</tr>
<tr>
<td>15.106</td>
<td>space</td>
</tr>
<tr>
<td>30.816</td>
<td>application</td>
</tr>
<tr>
<td>5.991</td>
<td>eos</td>
</tr>
<tr>
<td>4.196</td>
<td>aster</td>
</tr>
<tr>
<td>3.516</td>
<td>arianespace</td>
</tr>
<tr>
<td>3.004</td>
<td>ss</td>
</tr>
<tr>
<td>2.790</td>
<td>scientist</td>
</tr>
<tr>
<td>2.003</td>
<td>earth</td>
</tr>
<tr>
<td>0.836</td>
<td>measure</td>
</tr>
</tbody>
</table>

1. 0.513, 07/09/91, NASA Scratches Environment Gear From Satellite Plan
2. 0.500, 08/13/91, NASA Hasn’t Scrapped Imaging Spectrometer
3. 0.493, 08/07/89, When the Pentagon Launches a Secret Satellite, Space Sleuths Do Some Spy Work of Their Own
4. 0.493, 07/31/89, NASA Uses ‘Warm’ Superconductors For Fast Circuit
5. 0.492, 12/02/87, Telecommunications Tale of Two Companies
6. 0.491, 07/06/91, Soviets May Adapt Parts of SS-20 Missile For Commercial Use
7. 0.490, 07/12/88, Gaping Gap: Pentagon Lags in Race To Match the Soviets In Rocket Launchers
8. 0.490, 06/14/90, Rescue of Satellite By Space Agency To Cost $90 Million
Expanded query after relevance feedback

- 2.074 new
- 30.816 satellite
- 5.991 nasa
- 4.196 launch
- 3.516 instrument
- 3.004 bundespost
- 2.790 rocket
- 2.003 broadcast
- 0.836 oil

15.106 space
5.660 application
5.196 eos
3.972 aster
3.446 arianespace
2.806 ss
2.053 scientist
1.172 earth
0.646 measure

Any problem with this?

Relevance Feedback: Problems

Long queries are inefficient for typical IR engine
- Long response times for user
- High cost for retrieval system

Partial solution:
- Only reweight certain prominent terms
 - Perhaps top 20 by term frequency

Users are often reluctant to provide explicit feedback

It’s often harder to understand why a particular document was retrieved after applying relevance feedback

Will relevance feedback work?

Brittany Speers

hígado

Cosmonaut

RF assumes the user has sufficient knowledge for initial query

Misspellings - Brittany Speers

Cross-language information retrieval – hígado

Mismatch of searcher’s vocabulary vs. collection vocabulary: cosmonaut/astronaut
Relevance Feedback on the Web

Some search engines offer a similar/related pages feature (this is a trivial form of relevance feedback)
- Google (used to…)
- Altavista
- Stanford WebBase

But some don’t because it’s hard to explain to average user:
- Google
- Alltheweb
- msn
- Yahoo
- Excite initially had true relevance feedback, but abandoned it due to lack of use

Excite Relevance Feedback

Spink et al. 2000
Only about 4% of query sessions from a user used relevance feedback option
- Expressed as “More like this” link next to each result

But about 70% of users only looked at the first page of results and didn’t pursue things further
- So 4% is about 1/8 of people extending search

Relevance feedback improved results about 2/3rds of the time

Pseudo relevance feedback

Pseudo-relevance algorithm:
- Retrieve a ranked list of hits for the user’s query
- Assume that the top k documents are relevant.
- Do relevance feedback (e.g., Rocchio)

How well do you think it works?

Any concerns?

Pseudo relevance feedback

Pseudo-relevance algorithm:
- Retrieve a ranked list of hits for the user’s query
- Assume that the top k documents are relevant.
- Do relevance feedback (e.g., Rocchio)

Works very well on average

But can go horribly wrong for some queries

Several iterations can cause query drift

What is query drift?
- http://www.youtube.com/watch?v=1AwFy6KuxE
Expanding the query

We would like to suggest alternative query formulations to the user with the goal of:

- increasing precision
- increasing recall

What are methods we might try to accomplish this?

Increasing precision

Query assist:
- Generally done by query log mining
- Recommend frequent recent queries that contain partial string typed by user

Increasing recall: query expansion

Automatically expand the query with related terms and run through index

Spelling correction can be thought of a special case of this

cosmonaut ➔ cosmonaut astronaut space pilot

How might we come up with these expansions?
How do we augment the user query?

Manual thesaurus
- E.g. MedLine: physician, syn: doc, doctor, MD, medico
- Wordnet

Global Analysis: (static; of all documents in collection)
- Automatically derived thesaurus
 - (co-occurrence statistics)
 - Refinements based on query log mining
 - Common on the web

Local Analysis: (dynamic)
- Analysis of documents in result set

Example of manual thesaurus

Thesaurus-based query expansion
For each term, \(t \), in a query, expand the query with synonyms and related words of \(t \) from the thesaurus
- feline → feline cat

May weight added terms less than original query terms.

May significantly decrease precision, particularly with ambiguous terms
- "interest rate" → "interest rate fascinate evaluate"

There is a high cost of manually producing a thesaurus
- And for updating it for scientific changes

Automatic thesaurus generation
Given a large collection of documents, how might we determine if two words are synonyms?

Two words are synonyms if they co-occur with similar words

I drive a car
I bought new tires for my car
can I hitch a ride with you in your car

I drive an automobile
I bought new tires for my automobile
can I hitch a ride with you in your automobile
Automatic thesaurus generation

Given a large collection of documents, how might we determine if two words are synonyms?

Two words are synonyms if they co-occur with similar words

<table>
<thead>
<tr>
<th>I drive a car</th>
<th>I drive an automobile</th>
</tr>
</thead>
<tbody>
<tr>
<td>I bought new tires for my car</td>
<td>I bought new tires for my automobile</td>
</tr>
<tr>
<td>can I hitch a ride with you in your car</td>
<td>can I hitch a ride with you in your automobile</td>
</tr>
</tbody>
</table>

Automatic Thesaurus Generation Example

<table>
<thead>
<tr>
<th>word</th>
<th>ten nearest neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolutely</td>
<td>absurd whatsoever totally exactly nothing</td>
</tr>
<tr>
<td>bottomed</td>
<td>dip copper drops tipped slide trimmed flag</td>
</tr>
<tr>
<td>expriment</td>
<td>abbreviation superbly prickly way</td>
</tr>
<tr>
<td>doghouse</td>
<td>dog porch crawling beside downsweat gate</td>
</tr>
<tr>
<td>Makeup</td>
<td>repellent liquid glossy sunscreen skin gel p</td>
</tr>
<tr>
<td>mediating</td>
<td>reconciliation negotiate cease cancellation p</td>
</tr>
<tr>
<td>keeping</td>
<td>helping bring singing could some word able</td>
</tr>
<tr>
<td>lithograph</td>
<td>drawings Picasso Dalí sculptures Giacometti</td>
</tr>
<tr>
<td>pathogen</td>
<td>toxins bacteria organisms bacterial parasites</td>
</tr>
<tr>
<td>senses</td>
<td>group psyche truly /may have innate sex</td>
</tr>
</tbody>
</table>

Automatic Thesaurus Generation Discussion

Quality of associations is usually a problem

Term ambiguity may introduce irrelevant statistically correlated terms

- “Apple computer” → “Apple red fruit computer”

Since terms are highly correlated anyway, expansion may not retrieve many additional documents

Discussion

Certain query expansion techniques have thrived and many have disappeared (particularly for web search). Why? Which ones have survived?
IR: touching base