Evaluation

David Kauchak
cs458
Fall 2012
http://www.stanford.edu/class/cs276/handouts/recent/evaluation.ppt

IR Evaluation

For hw1, you examined 5 systems. How did you evaluate the systems/queries?

What are important features for an IR system?

How might we automatically evaluate the performance of a system? Compare two systems?

What data might be useful?

Measures for a search engine

How fast does it index (how frequently can we update the index)

How fast does it search

How big is the index

Expressiveness of query language

UI

Is it free?

Quality of the search results

Administrative

- Assignment 2
 - Great job getting ahead!
 - hw 3 out soon and will be due next Thursday
Measuring user performance

Who is the user we are trying to make happy and how can we measure this?

Web search engine
- user finds what they want and return to the engine
- measure rate of return users
- Financial drivers

eCommerce site
- user finds what they want and make a purchase
- Is it the end-user, or the eCommerce site, whose happiness we measure?
- Measure: time to purchase, or fraction of searchers who become buyers, revenue, profit, ...

Enterprise (company/govt/academic)
- Care about "user productivity"
- How much time do my users save when looking for information?

Common IR evaluation

Most common proxy: relevance of search results

Relevance is assessed relative to the *information need* not the *query*

Information need: I'm looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine

Query: wine red white heart attack effective

You evaluate whether the doc addresses the information need, NOT whether it has these words

Data for evaluation

Test queries

Documents

Data for evaluation

Test queries

Documents

What do we want to know about these results?
Data for evaluation

Test queries
Documents

IR system

Data for evaluation

Test queries
Documents

IR system2

Data for evaluation: option 1

For each query, identify **ALL** the relevant (and non-relevant) documents

Given a new system, we know whether the results retrieved are relevant or not

query — problems? ideas?

Data for evaluation: option 2

In many domains, finding **ALL** relevant documents is infeasible (think the web)

Instead, evaluate a few sets of results for a few systems, and assume these are all the relevant documents

query —
How can we quantify the results?

We want a numerical score to quantify how well our system is doing. Allows us to compare systems.

To start with, let’s just talk about boolean retrieval.

IR system

relevant vs. non-relevant

Accuracy?

The search engine divides ALL of the documents into two sets: relevant and non-relevant.

The **accuracy** of a search engine is the proportion of these that it got right.

Accuracy is a commonly used evaluation measure in machine learning classification.

Is this a good approach for IR?

Accuracy?

How to build a 99.9999% accurate search engine on a low budget....

snoogle.com

Search for: 0 matching results found.

People doing information retrieval want to find something and have a certain tolerance for junk.

Unranked retrieval evaluation: Precision and Recall

Precision: fraction of retrieved docs that are relevant = \(P(\text{relevant} | \text{retrieved}) \)

Recall: fraction of relevant docs that are retrieved = \(P(\text{retrieved} | \text{relevant}) \)

retrieved relevant precision recall
Precision/Recall tradeoff

Often a trade-off between better precision and better recall.

How can we increase recall?
- Increase the number of documents retrieved (for example, return all documents).

What impact will this likely have on precision?
- Generally, retrieving more documents will result in a decrease in precision.

A combined measure: F

Combined measure that assesses precision/recall tradeoff is **F measure** (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

People usually use balanced F_1 measure
- i.e., with $\beta = 1$ or $\alpha = \frac{1}{2}$

Harmonic mean is a conservative average.

F_1 and other averages

Evaluating ranked results

Most IR systems are ranked systems.

We want to evaluate the systems based on their ranking of the documents.

What might we do?
- With a ranked system, we can look at the precision/recall for the top K results.
- Plotting this over K, gives us the precision-recall curve.
A precision-recall curve

Which is system is better?

Evaluation

Graphs are good, but people want summary measures!

- **Precision at fixed retrieval level**
 - **Precision-at-k**: Precision of top k results
 - Perhaps appropriate for most of web search; all people want are good matches on the first one or two results pages
 - But: averages badly and has an arbitrary parameter of k

Any way to capture more of the graph?

- **11-point average precision**
 - Take the precision at 11 levels of recall varying from 0 to 1 by tenths of the documents and average them
 - Evaluates performance at all recall levels (which may be good or bad)

Typical (good) 11 point precisions

SabIR/Cornell 8A1 11pt precision from TREC 8 (1999)
11 point is somewhat arbitrary…

What are we really interested in?
- How high up are the relevant results

How might we measure this?
- Average position in list

Any issue with this?
- Query dependent, i.e. if there are more relevant documents, will be higher (worse)

Mean average precision (MAP)
- Average of the precision value obtained for the top \(k \) documents, each time a relevant doc is retrieved

MAP

Average of the precision value obtained each time a relevant doc is retrieved for all relevant documents

If a relevant document is not retrieved it is given a precision of 0 in the average

Precision at \(k \)?

1/1

Average of the precision value obtained each time a relevant doc is retrieved for all relevant documents

If a relevant document is not retrieved it is given a precision of 0 in the average

Precision at \(k \)?
Average of the precision value obtained each time a relevant doc is retrieved for all relevant documents.

If a relevant document is not retrieved it is given a precision of 0 in the average.
Other issues: human evaluations

Humans are not perfect or consistent
Often want multiple people to evaluate the results

<table>
<thead>
<tr>
<th>Number of docs</th>
<th>Judge 1</th>
<th>Judge 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Relevant</td>
<td>Relevant</td>
</tr>
<tr>
<td>70</td>
<td>Nonrelevant</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>20</td>
<td>Relevant</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>10</td>
<td>Nonrelevant</td>
<td>relevant</td>
</tr>
</tbody>
</table>

Multiple human labelers

Can we trust the data?

How do we use multiple judges?

<table>
<thead>
<tr>
<th>Number of docs</th>
<th>Judge 1</th>
<th>Judge 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Relevant</td>
<td>Relevant</td>
</tr>
<tr>
<td>70</td>
<td>Nonrelevant</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>20</td>
<td>Relevant</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>10</td>
<td>Nonrelevant</td>
<td>relevant</td>
</tr>
</tbody>
</table>

Measuring inter-judge agreement

Is there any problem with this?

370/400 = 92.5% 130/400 = 32.5%

<table>
<thead>
<tr>
<th>Number of docs</th>
<th>Judge 1</th>
<th>Judge 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Relevant</td>
<td>Relevant</td>
</tr>
<tr>
<td>70</td>
<td>Nonrelevant</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>20</td>
<td>Relevant</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>10</td>
<td>Nonrelevant</td>
<td>relevant</td>
</tr>
</tbody>
</table>

Measuring inter-judge (dis)agreement

Kappa measure
- Agreement measure among judges
- Designed for categorical judgments
- Corrects for chance agreement

Kappa = \[\frac{P(A) - P(E)}{1 - P(E)} \]

P(A) – proportion of time judges agree
P(E) – what agreement would be by chance

Kappa = -1 for total disagreement, 0 for chance agreement, 1 for total agreement

Kappa above 0.7 is usually considered good enough
Other issues: pure relevance

Why does Google do this?

Relevance vs Marginal Relevance
- A document can be redundant even if it is highly relevant
- Duplicates
- The same information from different sources
- Marginal relevance is a better measure of utility for the user

Measuring marginal relevance can be challenging, but search engines still attempt to tackle the problem

Evaluation at large search engines

Search engines have test collections of queries and hand-ranked results

Search engines also use non-relevance-based measures

Ideas?
- Clickthrough on first result
 - Not very reliable if you look at a single clickthrough...
 - but pretty reliable in the aggregate.
- Studies of user behavior in the lab
- A/B testing

A/B Testing

Google wants to test the variants below to see what the impact of the two variants is

How can they do it?
A/B testing

Have most users use old system

Divert a small proportion of traffic (e.g., 1%) to the new system that includes the innovation

Evaluate with an “automatic” measure like clickthrough on first result

Now we can directly see if the innovation does improve user happiness

Guest speaker today

Ron Kohavi

http://videolectures.net/cikm08_kohavi_pgtce/