TF-IDF David Kauchak cs458 cs458 fal 2012 .wew

Administrative

- Homework 2 due Thursday
- Assignment 2 out... get started!
- Popular media article will be posted for Thursday to read and discuss
 - make sure to read it [©]

Variable byte codes 100000110000101000010011110001 Still seems wasteful What is the major challenge for these variable length codes? We need to know the length of the number!

 $\ensuremath{\text{ldea:}}$ Encode the length of the number so that we know how many bits to read

Gamma codes

Represent a gap as a pair length and offset

offset is G in binary, with the leading bit cut off

- $13 \rightarrow 1101 \rightarrow 101$
- $17 \rightarrow 10001 \rightarrow 0001$
- $50 \rightarrow 110010 \rightarrow 10010$

length is the length of offset

- 13 (offset 101), it is 3
- 17 (offset 0001), it is 4
- 50 (offset 10010), it is 5

Encoding the length

We've stated what the length is, but not how to encode it

What is a requirement of our length encoding?

- Lengths will have variable length (e.g. 3, 4, 5 bits)
- We must be able to decode it without any ambiguity

Any ideas?

Unary code

- Encode a number *n* as *n* 1's, followed by a 0, to mark the end of it
- 5 → 111110
- 12 → 1111111111111

Gamma code examples

number	length	offset	γ-code
0			
1			
2			
3			
4			
9			
13			
24			
511			
1025			

Gamr	na code e	exampl	es
number	length	offset	γ-code
0			none
1	0		0
2	10	0	10,0
3	10	1	10,1
4	110	00	110,00
9	1110	001	1110,001
13	1110	101	1110,101
24	11110	1000	11110,1000
511	111111110	11111111	11111110,1111111
1025	11111111110	000000001	1111111110,000000001

Gamma seldom used in practice Machines have word boundaries – 8, 16, 32 bits Compressing and manipulating at individual bitgranularity will slow down query processing Variable byte alignment is potentially more efficient

Regardless of efficiency, variable byte is conceptually simpler at little additional space cost

RCV1 compression

Data structure	Size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
with blocking, k = 4	7.1
with blocking & front coding	5.9
collection (text, xml markup etc)	3,600.0
collection (text)	960.0
Term-doc incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, y-encoded	101.0

TDT token normalization

normalization	terms	% change
none	120K	-
number folding	117K	3%
owercasing	100K	17%
stemming	95K	25%
stoplist	120K	0%
number & lower & stoplist	97K	20%
all	78K	35%

Ranked retrieval

So far, our queries have all been Boolean

Documents either match or don't

Good for expert users with precise understanding of their needs and the collection

Also good for applications: can easily consume 1000s of results

- Not good for the majority of users
- Most users incapable of writing Boolean queries (or they are, but they think it's too much work)

More importantly: most users don't want to wade through 1000s of results

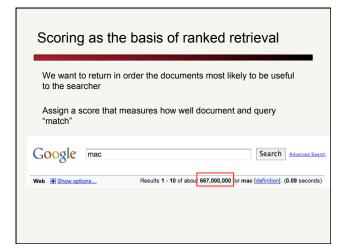
Problem with Boolean search: feast or famine

Boolean queries often result in either too few (=0) or too many (1000s) results.

Query 1: "standard user dlink 650" \rightarrow 200,000 hits Query 2: "standard user dlink 650 no card found": 0 hits

It takes skill to come up with a query that produces a manageable number of hits

With a ranked list of documents it does not matter how large the retrieved set is



Query-document matching scores

We need a way of assigning a score to a query/document pair

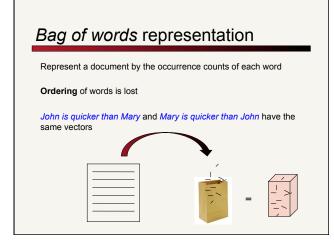
Why isn't it just for a score for a document?

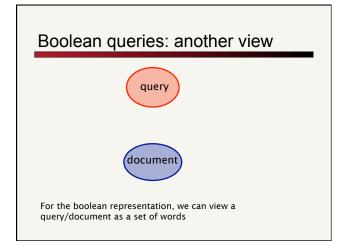
Besides whether or not a query (or query word) occurs in a document, what other indicators might be useful?

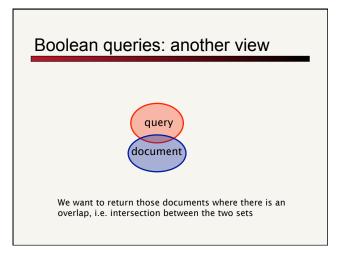
- How many *times* the word occurs in the document
- Where the word occurs
- How "important" is the word for example, a vs. motorcycle
- ...

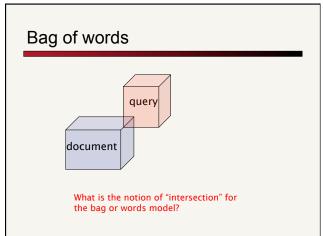
	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

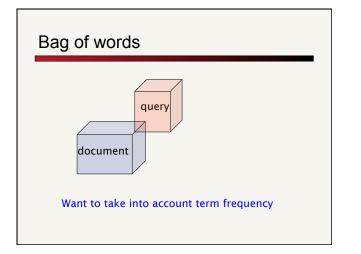
ler	m-docum	ient co	ount m	atrix	(
Conside	er the number o	of occurror	ener of a tr	orm in .	a doqui	mont
	ach document is a					nem.
■ Ea	ich document is a	count vector	In №º. a con	umn bei	bw	
	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbet
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0
			,			



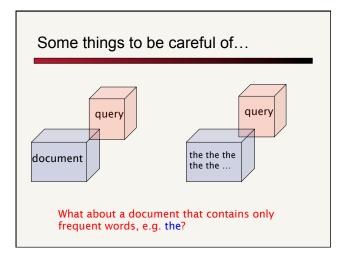


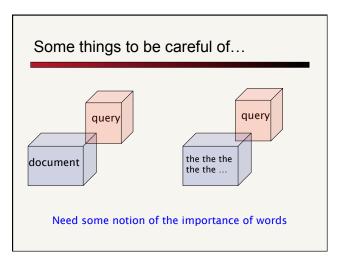


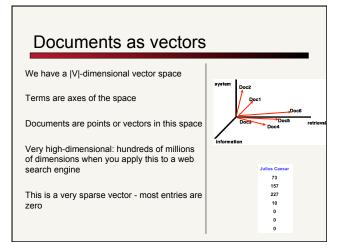


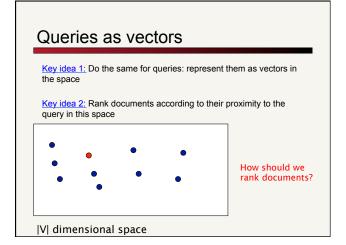


Some things to be careful of...Image: provide the state of the





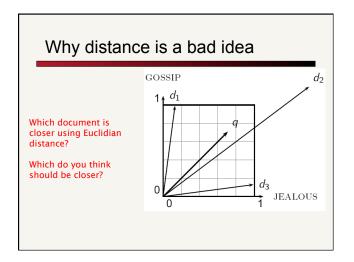


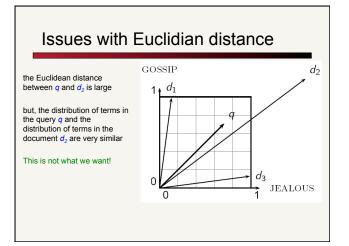


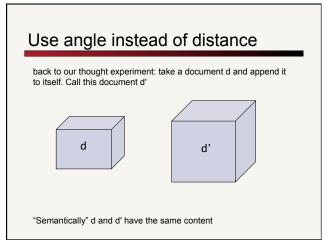
Formalizing vector space proximity

We have points in a |V| dimensional space How can we measure the proximity of documents in this space?

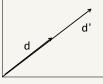
First cut: distance between two points Euclidean distance?



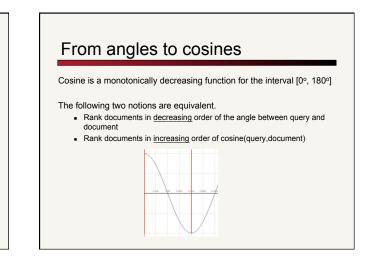




Use angle instead of distance The Euclidean distance between the two documents can be quite large



The angle between the two documents is 0, corresponding to maximal similarity



cosine(query,document)

How do we calculate the cosine between two vectors?

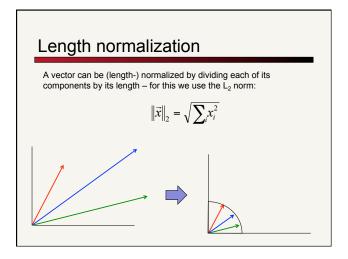
cosine(query,document)

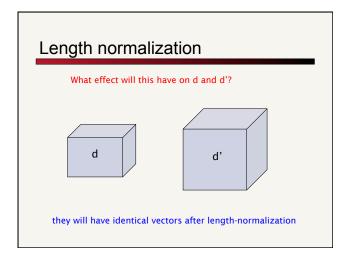
If they are unit length:

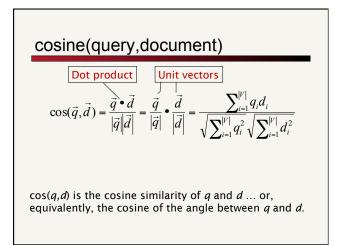
$$\cot \text{product} \\ \cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

 $\cos(q,d)$ is the cosine similarity of q and d ... or, equivalently, the cosine of the angle between q and d.

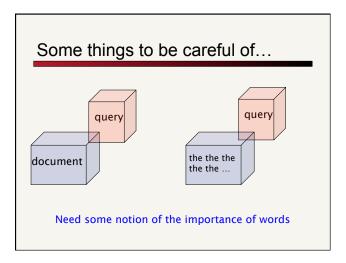
	t length" v	001013				
What is	s a "unit vector" c	or "unit lend	th vector"?			
Are ou	r vectors unit len	gth?				
	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
	2	0		1	1	0







Cosine si	milarity	v with 3	docun	nents	
How similar are the	novels:				
SaS: Sense and PaP: Pride and WH: Wuthering	Prejudice Heights	n freque	ncies (co	ounts)	
	term	SaS	PaP	WH	
	affection	115	58	20	
	jealous	10	7	11	
	gossip	2	0	6	



Term importance

Rare terms are more informative than frequent terms

Recall stop words

Consider a term in the query that is rare in the collection (e.g., *arachnocentric*)

A document containing this term is very likely to be relevant to the query *arachnocentric*

We want a high weight for rare terms like arachnocentric

Ideas?

Document frequency

We will use document frequency (df) to capture this in the score

Terms that occur in many documents are weighted *less*, since overlapping with these terms is very likely

In the extreme case, take a word like the that occurs in EVERY document

Terms that occur in only a few documents are weighted more

Collection vs. Document frequency

The collection frequency of is the number of occurrences in the collection, counting multiple occurrences $\label{eq:collection}$

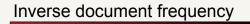
Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760
	Which word is a better (and should get a high	

Document frequency

How does "importance" or "informativeness" relate to document frequency?

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760



 df_t is the <u>document</u> frequency of *t*: the number of documents that contain *t*

• df is a measure of the informativeness of t

We define the idf (inverse document frequency) of *t* by

$$\operatorname{idf}_{t} = \log \frac{N}{\mathrm{df}_{t}}$$

where N is the number of documents in the collection

what does the log do?

Inverse document frequency

$$\operatorname{idf}_{t} = \log \frac{N}{\operatorname{df}_{t}}$$

Why do we have N here?

normalizes for corpus size: N/df_t = proportion of documents containing term t

idf exa	mple, sup	pose <i>N</i> =	= 1 milli	on
term	df _t		idf _t	
calpurnia		1		6
animal		100		4
sunday		1,000		3
fly		10,000		2
under		100,000		1
the		1,000,000		0
		.,,		-

There is one idf value for each term *t* in a collection.

term	df,	idf,
calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	
What if we d	lidn't use the log?	$\operatorname{idf}_{t} = \log \frac{N}{\mathrm{df}_{t}}$

term	df,	idf,
calpurnia	1	1,000,000
animal	100	10,000
sunday	1,000	1,000
fly	10,000	100
under	100,000	10
the	1,000,000	1
The log damp	ens the scores	$idf_t = log$

Putting it all together

We have a notion of term frequency overlap We have a notion of term importance We have a similarity measure (cosine similarity)

Can we put all of these together? Define a *weighting* for each term

The tf-idf weight of a term is the product of its tf weight and its idf weight

$$W_{t,d} = tf_{t,d} \times \log N/df_t$$

tf-idf weighting

$$W_{t,t} = tf_{t,d} \times \log N/df_t$$

Best known weighting scheme in information retrieval

Increases with the number of occurrences within a document

Increases with the rarity of the term in the collection

Works surprisingly well!

Works in many other application domains

Binary \rightarrow count \rightarrow weight matrix	
--	--

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\textbf{\in}\ R^{[V]}$

We then calculate the similarity using cosine similarity with these vectors

Burstiness

Take a rare word like arachnocentric

What is the likelihood that *arachnocentric* occurs in a document?

Given that you've seen it once, what is the likelihood that you'll see it again?

Does this have any impact on our model?

Log-frequency weighting

Want to reduce the effect of multiple occurrences of a term

A document about "Clinton" will have "Clinton" occurring many times

Rather than use the frequency, us the $\log \ensuremath{\mathsf{of}}$ the frequency

$$w_{t,d} = \begin{cases} 1 + \log tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

 $0 \rightarrow 0, \, 1 \rightarrow 1, \, 2 \rightarrow 1.3, \, 10 \rightarrow 2, \, 1000 \rightarrow 4, \, etc.$

Cosine similarity with 3 documents

How similar are the novels:

- SaS: Sense and Sensibility
- PaP: Pride and Prejudice
- WH: Wuthering Heights

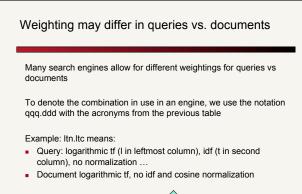
Term frequencies (counts)

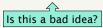
term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6

Log frequency weighting After normalization							
term	SaS	PaP	WH	term	SaS	PaP	WH
affection	3.06	2.76	2.30	affection	0.789	0.832	0.524
ealous	2.00	1.85	2.04	jealous	0.515	0.555	0.465
gossip	1.30	0	1.78	gossip	0.335	0	0.405
wutherin g	0	0	2.58	wutherin g	0	0	0.588

Term	frequency	Docum	ent frequency	Nor	<u>malizatio</u> n
n (natural)	tf _{t,d}	n (no)	1	n (none)	1
	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2+w_2^2++w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$max\{0, log \frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u
b (boolean)	$egin{cases} 1 & ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/CharLength^{lpha}$, $lpha < 1$
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$				

Why is the base of the log in idf immaterial?





tf-idf example: ltn.lnc (log idf none . log none cosine)

Document: *car insurance auto insurance* Query: *best car insurance*

Term			Query		[Prod			
	tf- raw	tf-wt	df	idf	wt	tf- raw	tf-wt	n'lized	
auto	0	0	5000	2.3	0	1			
best	1	1	50000	1.3	1.3	0			
car	1	1	10000	2.0	2.0	1			
insuranc e	1	1	1000	3.0	3.0	2			
	I	Doc le	ength	$=\sqrt{1}$	$^{2} + 0^{2} -$	$+1^2 + 1^2$	² ≈1.92	2	

tf-idf example: ltn.lnc									
Document: <i>car insurance auto insurance</i> Query: <i>best car insurance</i>									
Term			Query			C	ocume	nt	Prod
	tf- raw	tf-wt	df	idf	wt	tf- raw	tf-wt	n'lized	
auto	0	0	5000	2.3	0	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	0.52	1.04
insuranc e	1	1	1000	3.0	3.0	2	1.3	0.677	2.04
	I	Doc le	ength	$=\sqrt{1^2}$	$+0^{2}+$	$1^2 + 1.3$	3 ² ≈1.9	2	
		Score	= 0+0)+1.	04+2	.04 =	3.08		

Summary – vector space ranking

Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf vector

Compute the cosine similarity score for the query vector and each document vector

Rank documents with respect to the query by score

Return the top K (e.g., K = 10) to the user