
1

TF-IDF!

David Kauchak
cs458

Fall 2012
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture6-tfidf.ppt

Administrative

n  Homework 2 due Thursday
n  Assignment 2 out… get started!
n  Popular media article will be posted for Thursday

to read and discuss
n  make sure to read it J

Variable byte codes

Still seems wasteful

What is the major challenge for these variable length codes?

We need to know the length of the number!

Idea: Encode the length of the number so that we know how many bits
to read

100000011000010100000100 11110001

Gamma codes

Represent a gap as a pair length and offset

offset is G in binary, with the leading bit cut off

n  13 → 1101 → 101
n  17 → 10001 → 0001
n  50 → 110010 → 10010

length is the length of offset

n  13 (offset 101), it is 3
n  17 (offset 0001), it is 4
n  50 (offset 10010), it is 5

2

Encoding the length
We’ve stated what the length is, but not how to encode it

What is a requirement of our length encoding?

n  Lengths will have variable length (e.g. 3, 4, 5 bits)
n  We must be able to decode it without any ambiguity

Any ideas?

Unary code

n  Encode a number n as n 1’s, followed by a 0, to mark the end of it
n  5 → 111110
n  12 → 1111111111110

Gamma code examples
number length offset γ-code

0
1
2
3
4
9

13
24

511
1025

Gamma code examples
number length offset γ-code

0 none
1 0 0
2 10 0 10,0
3 10 1 10,1
4 110 00 110,00
9 1110 001 1110,001

13 1110 101 1110,101
24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

Gamma seldom used in practice

Machines have word boundaries – 8, 16, 32 bits

Compressing and manipulating at individual bit-
granularity will slow down query processing

Variable byte alignment is potentially more efficient

Regardless of efficiency, variable byte is conceptually
simpler at little additional space cost

3

RCV1 compression
Data structure Size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k = 4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, γ-encoded 101.0

TDT token normalization
normalization terms % change
none 120K -

number folding 117K 3%

lowercasing 100K 17%

stemming 95K 25%

stoplist 120K 0%

number & lower & stoplist 97K 20%

all 78K 35%

What normalization technique(s) should we use?

Ranked retrieval
So far, our queries have all been Boolean

n  Documents either match or don’t

Good for expert users with precise understanding of their needs and the
collection

Also good for applications: can easily consume 1000s of results

n  Not good for the majority of users
n  Most users incapable of writing Boolean queries (or they are, but they think

it’s too much work)

More importantly: most users don’t want to wade through 1000s of results

Problem with Boolean search: feast or famine

Boolean queries often result in either too few (=0) or too many
(1000s) results.

Query 1: “standard user dlink 650” → 200,000 hits
Query 2: “standard user dlink 650 no card found”: 0 hits

It takes skill to come up with a query that produces a manageable
number of hits

With a ranked list of documents it does not matter how large the
retrieved set is

4

Scoring as the basis of ranked retrieval

We want to return in order the documents most likely to be useful
to the searcher

Assign a score that measures how well document and query
“match”

Query-document matching scores

We need a way of assigning a score to a query/document pair

Why isn’t it just for a score for a document?

Besides whether or not a query (or query word) occurs in a
document, what other indicators might be useful?

n  How many times the word occurs in the document
n  Where the word occurs
n  How “important” is the word – for example, a vs. motorcycle
n  …

Recall: Binary term-document incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V|

Term-document count matrix

Consider the number of occurrences of a term in a document:
n  Each document is a count vector in ℕv: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

What information is lost with this representation?

5

Bag of words representation
Represent a document by the occurrence counts of each word

Ordering of words is lost

John is quicker than Mary and Mary is quicker than John have the
same vectors

=

Boolean queries: another view

query

document

For the boolean representation, we can view a
query/document as a set of words

Boolean queries: another view

query

document

We want to return those documents where there is an
overlap, i.e. intersection between the two sets

Bag of words

query

document

What is the notion of “intersection” for
the bag or words model?

6

query

document

Want to take into account term frequency

Bag of words

query

document

query

document

Say I take the document and simply append it to
itself. What happens to the overlap?

Some things to be careful of…

Need some notion of the length of a document

query query

What about a document that contains only
frequent words, e.g. the?

document the the the
the the …

Some things to be careful of…

query query

Need some notion of the importance of words

document the the the
the the …

Some things to be careful of…

7

Documents as vectors
We have a |V|-dimensional vector space

Terms are axes of the space

Documents are points or vectors in this space

Very high-dimensional: hundreds of millions
of dimensions when you apply this to a web
search engine

This is a very sparse vector - most entries are
zero

Queries as vectors
Key idea 1: Do the same for queries: represent them as vectors in
the space

Key idea 2: Rank documents according to their proximity to the
query in this space

|V| dimensional space

How should we
rank documents?

Formalizing vector space proximity

We have points in a |V| dimensional space
How can we measure the proximity of documents in this
space?

First cut: distance between two points
Euclidean distance?

Why distance is a bad idea

Which document is
closer using Euclidian
distance?

Which do you think
should be closer?

8

Issues with Euclidian distance

the Euclidean distance
between q and d2 is large

but, the distribution of terms in
the query q and the
distribution of terms in the
document d2 are very similar

This is not what we want!

Use angle instead of distance
back to our thought experiment: take a document d and append it
to itself. Call this document d′

“Semantically” d and d′ have the same content

d d’

Use angle instead of distance
The Euclidean distance between the two documents can be quite large

The angle between the two documents is 0, corresponding to maximal
similarity

d

d’

From angles to cosines
Cosine is a monotonically decreasing function for the interval [0o, 180o]

The following two notions are equivalent.

n  Rank documents in decreasing order of the angle between query and
document

n  Rank documents in increasing order of cosine(query,document)

9

cosine(query,document)

How do we calculate the cosine
between two vectors?

cosine(query,document)

!

cos(! q ,
!
d) =
! q •
!
d = qidii=1

V
"

Dot product

cos(q,d) is the cosine similarity of q and d … or, equivalently, the
cosine of the angle between q and d.

If they are unit length:

“unit length” vectors

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

No… we need some notion of the length of a document

What is a “unit vector” or “unit length vector”?

Are our vectors unit length?

Length normalization
A vector can be (length-) normalized by dividing each of its
components by its length – for this we use the L2 norm:

∑=
i i
xx 2

2

10

Length normalization

d d’

What effect will this have on d and d’?

they will have identical vectors after length-normalization

cosine(query,document)

∑∑
∑

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(

Dot product Unit vectors

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Cosine similarity with 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

How similar are the novels:

Term frequencies (counts)

SaS: Sense and Sensibility
PaP: Pride and Prejudice
WH: Wuthering Heights

Some things to be careful of…

query query

Need some notion of the importance of words

document the the the
the the …

11

Term importance
Rare terms are more informative than frequent terms

n  Recall stop words

Consider a term in the query that is rare in the collection (e.g.,
arachnocentric)

A document containing this term is very likely to be relevant to the
query arachnocentric

 We want a high weight for rare terms like arachnocentric

Ideas?

Document frequency
We will use document frequency (df) to capture this in the score

Terms that occur in many documents are weighted less, since
overlapping with these terms is very likely

n  In the extreme case, take a word like the that occurs in EVERY
document

Terms that occur in only a few documents are weighted more

Collection vs. Document frequency
The collection frequency of is the number of occurrences in the
collection, counting multiple occurrences

Example:

Word Collection
frequency

Document frequency

insurance 10440 3997

try 10422 8760

Which word is a better search term
(and should get a higher weight)?

Document frequency

How does “importance” or “informativeness”
relate to document frequency?

Word Collection
frequency

Document frequency

insurance 10440 3997

try 10422 8760

12

Inverse document frequency

dft is the document frequency of t: the number of
documents that contain t

n  df is a measure of the informativeness of t

We define the idf (inverse document frequency) of t by

where N is the number of documents in the collection

idft = log N
dft

what does the log do?

Inverse document frequency

idft = log N
dft

Why do we have N here?

normalizes for corpus size:
N/dft = proportion of documents containing term t

idf example, suppose N= 1 million
term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

idf example, suppose N= 1 million
term dft idft

calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

What if we didn’t use the log? idft = log N
dft

13

idf example, suppose N= 1 million

term dft idft

calpurnia 1 1,000,000

animal 100 10,000

sunday 1,000 1,000

fly 10,000 100

under 100,000 10

the 1,000,000 1

The log dampens the scores idft = log N
dft

Putting it all together

We have a notion of term frequency overlap
We have a notion of term importance
We have a similarity measure (cosine similarity)

Can we put all of these together?
Define a weighting for each term

The tf-idf weight of a term is the product of its tf weight and its idf weight

!

w
t ,d

= tft,d " logN /dft

tf-idf weighting

Best known weighting scheme in information retrieval

Increases with the number of occurrences within a document

Increases with the rarity of the term in the collection

Works surprisingly well!

Works in many other application domains

!

w
t ,d

= tft,d " logN /dft

Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued vector of
tf-idf weights ∈ R|V|

We then calculate the similarity using cosine similarity with
these vectors

14

Burstiness

Take a rare word like arachnocentric

What is the likelihood that arachnocentric occurs in a
document?

Given that you’ve seen it once, what is the likelihood that
you’ll see it again?

Does this have any impact on our model?

Log-frequency weighting
Want to reduce the effect of multiple occurrences of a term

A document about “Clinton” will have “Clinton” occurring many times

Rather than use the frequency, us the log of the frequency

0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

!

wt,d =
1 + log tft,d , if tft,d > 0

0, otherwise
"

$

Cosine similarity with 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

How similar are the novels:

Term frequencies (counts)

SaS: Sense and Sensibility
PaP: Pride and Prejudice
WH: Wuthering Heights

3 documents example contd.
Log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wutherin
g

0 0 2.58

After normalization

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wutherin
g

0 0 0.588

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

15

tf-idf weighting has many variants

Why is the base of the log in idf immaterial?

Weighting may differ in queries vs. documents

Many search engines allow for different weightings for queries vs
documents

To denote the combination in use in an engine, we use the notation
qqq.ddd with the acronyms from the previous table

Example: ltn.ltc means:
n  Query: logarithmic tf (l in leftmost column), idf (t in second

column), no normalization …
n  Document logarithmic tf, no idf and cosine normalization

Is this a bad idea?

tf-idf example: ltn.lnc
(log idf none . log none cosine)

Term Query Document Prod
tf-

raw
tf-wt df idf wt tf-

raw
tf-wt n’lized

auto 0 0 5000 2.3 0 1
best 1 1 50000 1.3 1.3 0
car 1 1 10000 2.0 2.0 1
insuranc
e

1 1 1000 3.0 3.0 2

Document: car insurance auto insurance
Query: best car insurance

Doc length = 92.11101 2222 ≈+++

tf-idf example: ltn.lnc

Term Query Document Prod
tf-

raw
tf-wt df idf wt tf-

raw
tf-wt n’lized

auto 0 0 5000 2.3 0 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 0.52 1.04
insuranc
e

1 1 1000 3.0 3.0 2 1.3 0.677 2.04

Document: car insurance auto insurance
Query: best car insurance

Score = 0+0+1.04+2.04 = 3.08

Doc length =

!

12 + 02 +12 +1.32 "1.92

16

Summary – vector space ranking
Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf vector

Compute the cosine similarity score for the query vector and each
document vector

Rank documents with respect to the query by score

Return the top K (e.g., K = 10) to the user

