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TF-IDF!

David Kauchak 
cs458 

Fall 2012 
adapted from: 

http://www.stanford.edu/class/cs276/handouts/lecture6-tfidf.ppt 

Administrative 

n  Homework 2 due Thursday 
n  Assignment 2 out… get started! 
n  Popular media article will be posted for Thursday 

to read and discuss 
n  make sure to read it J 

Variable byte codes 

Still seems wasteful 
 
What is the major challenge for these variable length codes? 
 
We need to know the length of the number! 

Idea:  Encode the length of the number so that we know how many bits 
to read 

100000011000010100000100 11110001 

Gamma codes 

Represent a gap as a pair length and offset 
 
offset is G in binary, with the leading bit cut off 

n  13 → 1101 → 101 
n  17 → 10001 → 0001 
n  50 → 110010 → 10010 

 
length is the length of offset 

n  13 (offset 101), it is 3 
n  17 (offset 0001), it is 4 
n  50 (offset 10010), it is 5 
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Encoding the length  
We’ve stated what the length is, but not how to encode it 
 
What is a requirement of our length encoding? 

n  Lengths will have variable length (e.g. 3, 4, 5 bits) 
n  We must be able to decode it without any ambiguity 

 
Any ideas? 
 
Unary code 

n  Encode a number n as n 1’s, followed by a 0, to mark the end of it 
n  5 → 111110 
n  12 → 1111111111110 

Gamma code examples 
number length  offset  γ-code 

0 
1 
2 
3 
4 
9 

13 
24 

511 
1025 

Gamma code examples 
number length  offset  γ-code 

0 none 
1 0 0 
2 10 0 10,0 
3 10 1 10,1 
4 110  00 110,00 
9 1110 001 1110,001 

13 1110 101 1110,101 
24 11110 1000 11110,1000 

511 111111110 11111111 111111110,11111111 
1025 11111111110 0000000001 11111111110,0000000001 

Gamma seldom used in practice 

Machines have word boundaries – 8, 16, 32 bits 
 
Compressing and manipulating at individual bit-
granularity will slow down query processing 
 
Variable byte alignment is potentially more efficient 
 
Regardless of efficiency, variable byte is conceptually 
simpler at little additional space cost 
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RCV1 compression 
Data structure  Size in MB 
dictionary, fixed-width 11.2 
dictionary, term pointers into string 7.6 
with blocking, k = 4 7.1 
with blocking & front coding 5.9 
collection (text, xml markup etc) 3,600.0 
collection (text) 960.0 
Term-doc incidence matrix 40,000.0 
postings, uncompressed (32-bit words) 400.0 
postings, uncompressed (20 bits) 250.0 
postings, variable byte encoded 116.0 
postings, γ-encoded 101.0 

TDT token normalization 
normalization terms % change 
none 120K - 

number folding 117K 3% 

lowercasing 100K 17% 

stemming 95K 25% 

stoplist 120K 0% 

number & lower & stoplist 97K 20% 

all 78K 35% 

What normalization technique(s) should we use? 

Ranked retrieval 
So far, our queries have all been Boolean 

n  Documents either match or don’t 

Good for expert users with precise understanding of their needs and the 
collection 
 
Also good for applications:  can easily consume 1000s of results 

n  Not good for the majority of users 
n  Most users incapable of writing Boolean queries (or they are, but they think 

it’s too much work) 
 
More importantly: most users don’t want to wade through 1000s of results 

Problem with Boolean search: feast or famine 

Boolean queries often result in either too few (=0) or too many 
(1000s) results. 
 
Query 1: “standard user dlink 650” → 200,000 hits 
Query 2: “standard user dlink 650 no card found”: 0 hits 
 
It takes skill to come up with a query that produces a manageable 
number of hits 
 
With a ranked list of documents it does not matter how large the 
retrieved set is 
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Scoring as the basis of ranked retrieval 

We want to return in order the documents most likely to be useful 
to the searcher 
 
Assign a score that measures how well document and query 
“match” 

Query-document matching scores 

We need a way of assigning a score to a query/document pair 
 
Why isn’t it just for a score for a document? 
 
Besides whether or not a query (or query word) occurs in a 
document, what other indicators might be useful? 

n  How many times the word occurs in the document 
n  Where the word occurs 
n  How “important” is the word – for example, a vs. motorcycle 
n  … 

Recall: Binary term-document incidence matrix 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V| 

Term-document count matrix 

Consider the number of occurrences of a term in a document:  
n  Each document is a count vector in ℕv: a column below  

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

What information is lost with this representation? 
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Bag of words representation 
Represent a document by the occurrence counts of each word 
 
Ordering of words is lost 
 
John is quicker than Mary and Mary is quicker than John have the 
same vectors 

= 

Boolean queries: another view 

query 

document 

For the boolean representation, we can view a  
query/document as a set of words 

Boolean queries: another view 

query 

document 

We want to return those documents where there is an 
overlap, i.e. intersection between the two sets 

Bag of words 

query 

document 

What is the notion of “intersection” for 
the bag or words model? 
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query 

document 

Want to take into account term frequency 

Bag of words 

query 

document 

query 

document 

Say I take the document and simply append it to 
itself. What happens to the overlap? 

Some things to be careful of… 

Need some notion of the length of a document 

query query 

What about a document that contains only 
frequent words, e.g. the? 

document the the the  
the the … 

Some things to be careful of… 

query query 

Need some notion of the importance of words 

document the the the  
the the … 

Some things to be careful of… 
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Documents as vectors 
We have a |V|-dimensional vector space 
 
Terms are axes of the space 
 
Documents are points or vectors in this space 
 
Very high-dimensional: hundreds of millions 
of dimensions when you apply this to a web 
search engine 
 
This is a very sparse vector - most entries are 
zero 

Queries as vectors 
Key idea 1: Do the same for queries: represent them as vectors in 
the space 
 
Key idea 2: Rank documents according to their proximity to the 
query in this space 

|V| dimensional space 

How should we 
rank documents? 

Formalizing vector space proximity 

We have points in a |V| dimensional space 
How can we measure the proximity of documents in this 
space? 

 
First cut: distance between two points 
Euclidean distance? 

Why distance is a bad idea 

Which document is 
closer using Euclidian 
distance? 
 
Which do you think 
should be closer? 
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Issues with Euclidian distance 

the Euclidean distance 
between q and d2 is large 
 
but, the distribution of terms in 
the query q and the 
distribution of terms in the 
document d2 are very similar 
 
This is not what we want! 

Use angle instead of distance 
back to our thought experiment: take a document d and append it 
to itself. Call this document d′ 
 
 
 
 
 
 
 
 
 
 
“Semantically” d and d′ have the same content 
 

d d’ 

Use angle instead of distance 
The Euclidean distance between the two documents can be quite large 
 
 
 
 
 
 
 
 
 
 
The angle between the two documents is 0, corresponding to maximal 
similarity 

d 

d’ 

From angles to cosines 
Cosine is a monotonically decreasing function for the interval [0o, 180o] 
 
The following two notions are equivalent. 

n  Rank documents in decreasing order of the angle between query and 
document 

n  Rank documents in increasing order of cosine(query,document) 
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cosine(query,document) 

How do we calculate the cosine 
between two vectors? 

cosine(query,document) 

  

! 

cos(! q ,
! 
d ) =
! q •
! 
d = qidii=1

V
"

Dot product 

cos(q,d) is the cosine similarity of q and d … or, equivalently, the 
cosine of the angle between q and d. 

If they are unit length: 

“unit length” vectors 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

No… we need some notion of the length of a document 

What is a “unit vector” or “unit length vector”? 
 
Are our vectors unit length? 

Length normalization 
A vector can be (length-) normalized by dividing each of its 
components by its length – for this we use the L2 norm: 

 
 

∑=
i i
xx 2

2
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Length normalization 

d d’ 

What effect will this have on d and d’? 

they will have identical vectors after length-normalization 

cosine(query,document) 

∑∑
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Dot product Unit vectors 

cos(q,d) is the cosine similarity of q and d … or, 
equivalently, the cosine of the angle between q and d. 

Cosine similarity with 3 documents 

term SaS PaP WH 

affection 115 58  20 

jealous 10 7 11 

gossip 2 0 6 

How similar are the novels: 

Term frequencies (counts) 

 
SaS: Sense and Sensibility 
PaP: Pride and Prejudice 
WH: Wuthering Heights 

Some things to be careful of… 

query query 

Need some notion of the importance of words 

document the the the  
the the … 
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Term importance 
Rare terms are more informative than frequent terms 

n  Recall stop words 
 
Consider a term in the query that is rare in the collection (e.g., 
arachnocentric) 
 
A document containing this term is very likely to be relevant to the 
query arachnocentric 
 
 We want a high weight for rare terms like arachnocentric 
 

Ideas? 

Document frequency 
We will use document frequency (df) to capture this in the score 

Terms that occur in many documents are weighted less, since 
overlapping with these terms is very likely 

n  In the extreme case, take a word like the that occurs in EVERY 
document 

Terms that occur in only a few documents are weighted more 

Collection vs. Document frequency 
The collection frequency of is the number of occurrences in the 
collection, counting multiple occurrences 
 
Example: 

Word Collection 
frequency 

Document frequency 

insurance 10440 3997 

try 10422 8760 

Which word is a better search term 
(and should get a higher weight)? 

Document frequency 

How does “importance” or “informativeness” 
relate to document frequency? 

Word Collection 
frequency 

Document frequency 

insurance 10440 3997 

try 10422 8760 
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Inverse document frequency 

dft is the document frequency of t: the number of 
documents that contain t 

n  df is a measure of the informativeness of t 

 
We define the idf (inverse document frequency) of t by 
 
 
 
 
where N is the number of documents in the collection 

idft  =  log N
dft

what does the log do? 

Inverse document frequency 

idft  =  log N
dft

Why do we have N here? 
 
normalizes for corpus size: 
N/dft = proportion of documents containing term t 

idf example, suppose N= 1 million 
term dft idft 

calpurnia 1 6 

animal 100 4 

sunday 1,000 3 

fly 10,000 2 

under 100,000 1 

the 1,000,000 0 

There is one idf value for each term t in a collection. 

idf example, suppose N= 1 million 
term dft idft 

calpurnia 1 

animal 100 

sunday 1,000 

fly 10,000 

under 100,000 

the 1,000,000 

What if we didn’t use the log? idft  =  log N
dft
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idf example, suppose N= 1 million 

term dft idft 

calpurnia 1 1,000,000 

animal 100 10,000 

sunday 1,000 1,000 

fly 10,000 100 

under 100,000 10 

the 1,000,000 1 

The log dampens the scores idft  =  log N
dft

Putting it all together 

We have a notion of term frequency overlap 
We have a notion of term importance 
We have a similarity measure (cosine similarity) 

Can we put all of  these together? 
Define a weighting for each term 
 
The tf-idf weight of a term is the product of its tf weight and its idf weight 

 

! 

w
t ,d

= tft,d " logN /dft

tf-idf weighting 

Best known weighting scheme in information retrieval 
 
Increases with the number of occurrences within a document 
 
Increases with the rarity of the term in the collection 
 
Works surprisingly well! 
 
Works in many other application domains 

! 

w
t ,d

= tft,d " logN /dft

Binary → count → weight matrix 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued vector of 
tf-idf weights ∈ R|V| 

We then calculate the similarity using cosine similarity with 
these vectors 
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Burstiness 

Take a rare word like arachnocentric 

What is the likelihood that arachnocentric occurs in a 
document? 

Given that you’ve seen it once, what is the likelihood that 
you’ll see it again? 

Does this have any impact on our model? 

Log-frequency weighting 
Want to reduce the effect of multiple occurrences of a term 
 
A document about “Clinton” will have “Clinton” occurring many times 
 
Rather than use the frequency, us the log of the frequency 

 
 
0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc. 

! 

wt,d  =  
1 +  log tft,d , if tft,d  >  0

0,  otherwise
" 
# 
$ 

Cosine similarity with 3 documents 

term SaS PaP WH 

affection 115 58  20 

jealous 10 7 11 

gossip 2 0 6 

How similar are the novels: 

Term frequencies (counts) 

 
SaS: Sense and Sensibility 
PaP: Pride and Prejudice 
WH: Wuthering Heights 

3 documents example contd. 
Log frequency weighting 

term SaS PaP WH 
affection 3.06 2.76 2.30 
jealous 2.00 1.85 2.04 
gossip 1.30 0 1.78 
wutherin
g 

0 0 2.58 

After normalization 

term SaS PaP WH 
affection 0.789 0.832 0.524 
jealous 0.515 0.555 0.465 
gossip 0.335 0 0.405 
wutherin
g 

0 0 0.588 

cos(SaS,PaP) ≈ 
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94 
cos(SaS,WH) ≈ 0.79 
cos(PaP,WH) ≈ 0.69 
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tf-idf weighting has many variants 

Why is the base of the log in idf immaterial? 

Weighting may differ in queries vs. documents 

Many search engines allow for different weightings for queries vs 
documents 
 
To denote the combination in use in an engine, we use the notation 
qqq.ddd with the acronyms from the previous table 
 
Example: ltn.ltc means: 
n  Query: logarithmic tf (l in leftmost column), idf (t in second 

column), no normalization … 
n  Document logarithmic tf, no idf and cosine normalization 

Is this a bad idea? 

tf-idf example: ltn.lnc 
(log idf none . log none cosine) 

Term Query Document Prod 
tf-

raw 
tf-wt df idf wt tf-

raw 
tf-wt n’lized 

auto 0 0 5000 2.3  0 1 
best 1 1 50000 1.3 1.3 0 
car 1  1 10000 2.0 2.0 1 
insuranc
e 

1 1 1000 3.0 3.0 2 

Document: car insurance auto insurance 
Query: best car insurance 

Doc length = 92.11101 2222 ≈+++

tf-idf example: ltn.lnc 

Term Query Document Prod 
tf-

raw 
tf-wt df idf wt tf-

raw 
tf-wt n’lized 

auto 0 0 5000 2.3  0 1 1 0.52 0 
best 1 1 50000 1.3 1.3 0 0 0 0 
car 1  1 10000 2.0 2.0 1 1 0.52 1.04 
insuranc
e 

1 1 1000 3.0 3.0 2 1.3 0.677 2.04 

Document: car insurance auto insurance 
Query: best car insurance 

Score = 0+0+1.04+2.04 = 3.08 

Doc length = 

! 

12 + 02 +12 +1.32 "1.92
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Summary – vector space ranking 
Represent the query as a weighted tf-idf vector 
 
Represent each document as a weighted tf-idf vector 
 
Compute the cosine similarity score for the query vector and each 
document vector 
 
Rank documents with respect to the query by score 
 
Return the top K (e.g., K = 10) to the user 


