
1

Index Compression!

David Kauchak
cs458

Fall 2012
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture5-indexcompression.ppt

Administrative

n  Assignment 1?
n  Homework 2 out

n  “What I did last summer” lunch talks today

Distributed indexing
Maintain a master machine directing the indexing job
Break up indexing into sets of (parallel) tasks

Master machine assigns each task to an idle machine from a pool
Besides speed, one advantage of a distributed scheme is fault
tolerance

Master

Tasks

2

Distributed indexing
Quick refresh of the non-parallelized approach:

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

word 1

word 2

word n

…

1. create term list 2. sort term list 3. create postings list

Distributed indexing

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

word 1

word 2

word n

…

1. create term list 2. sort term list 3. create postings list

Split into smaller, parallelizable chunks

Parallel tasks
We will use two sets of parallel tasks

n  Parsers (Step 1: create term list)
n  Inverters (Steps 2-3: sort term list, create postings list)

split documents up for parsers

al
l
d
o
cs

Parsers
Read a document at a time and emits (term, doc) pairs (Step 1)

Parser writes pairs into j partitions
Each partition is for a range of terms’ first letters

n  (e.g., a-f, g-p, q-z) – here j=3.

a-f

g-p

q-z

did 1
enact 1
caesar 1
capitol 1
brutus 1
be 2
caesar 2
brutus 2
caesar 2

was 1
the 1
so 2
with 2
told 2
was 2

3

Inverters
Collects all (term, doc) pairs for one term-partition

Sorts and writes to postings lists

a-f

a-f

a-f

a-f

a-f

a-f

index for a-f

a-f

2. sort term list 3. create postings list 1b. concatenate

Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase

MapReduce

MapReduce (Dean and Ghemawat 2004) is a robust
and simple framework for distributed computing without
having to write code for the distribution part

The Google indexing system (ca. 2002) consists of a
number of phases, each implemented in MapReduce

MapReduce and similar type setups are hugely popular
for web-scale development!

MapReduce
Index construction is just one phase
After indexing, we need to be ready to answer queries

There are two ways to we can partition the index:

n  Term-partitioned: one machine handles a subrange of terms
n  Document-partitioned: one machine handles a subrange of documents

Which do you think search engines use? Why?

word 1

word 2

word n

…

4

Index compression

Compression techniques attempt to decrease the
space required to store an index

What other benefits does compression have?
n  Keep more stuff in memory (increases speed)
n  Increase data transfer from disk to memory

n  [read compressed data and decompress] is faster than
[read uncompressed data]

n  What does this assume?
n  Decompression algorithms are fast
n  True of the decompression algorithms we use

How does the vocabulary size grow
with the size of the corpus?

number of documents

vo
ca

b
u
la

ry
 s

iz
e

How does the vocabulary size grow
with the size of the corpus?

log of the number of documents

lo
g
 o

f
th

e
vo

ca
b
u
la

ry
 s

iz
e

Heaps’ law

Does this explain the plot we saw before?

What does this say about the vocabulary size as we
increase the number of documents?

n  there are almost always new words to be seen: increasing
the number of documents increases the vocabulary size

n  to get a linear increase in vocab size, need to add
exponential number of documents

vocab size = k (tokens)b

V = k Tb

log V= log k + b log(T)

Typical values:
30 ≤ k ≤ 100
b ≈ 0.5

5

vocab growth vs. size of the corpus

log of the number of documents

lo
g
 o

f
th

e
vo

ca
b
u
la

ry
 s

iz
e log10M = 0.49 log10T + 1.64

is the best least squares fit.

M = 101.64T0.49

k = 101.64 ≈ 44
b = 0.49.

Discussion

How do token normalization techniques and similar
efforts like spelling correction interact with Heaps’ law?

vocab size = k (tokens)b

V = k Tb

Typical values:
30 ≤ k ≤ 100
b ≈ 0.5

Heaps’ law and compression

index compression is the task of reducing the
memory requirement for storing the index

What implications does Heaps’ law have for
compression?

n  Dictionary sizes will continue to increase
n  Dictionaries can be very large

How does a word’s frequency relate to
it’s frequency rank

word’s frequency rank

w
o
rd

 f
re

q
u
en

cy

6

How does a word’s frequency relate to
it’s frequency rank

log of the frequency rank

lo
g
 o

f
th

e
fr

eq
u
en

cy

Zipf’s law

In natural language, there are a few very frequent terms
and very many very rare terms

Zipf’s law: The i th most frequent term has frequency
proportional to 1/i

where c is a constant

frequencyi ∝ c/i

log(frequencyi) ∝ log c – log i

Consequences of Zipf’s law

If the most frequent term (the) occurs cf1 times, how often
do the 2nd and 3rd most frequent occur?

n  then the second most frequent term (of) occurs cf1/2 times
n  the third most frequent term (and) occurs cf1/3 times …

If we’re counting the number of words in a given frequency
range, lowering the frequency band linearly results in an
exponential increase in the number of words

Zipf’s law and compression

What implications does Zipf’s law have for compression?

word’s frequency rank

w
o
rd

 f
re

q
u
en

cy

Some terms will occur
very frequently in
positional postings lists

Dealing with these well
can drastically reduce the
index size

7

Compresssing the inverted index

word 1

word 2

word n

…
What do we need to store?

How are we storing it?

Compressing the inverted index

Two things to worry about:
dictionary:

n  make it small enough to keep in main memory
n  Search begins with the dictionary

postings:
n  Reduce disk space needed, decrease time to read from disk
n  Large search engines keep a significant part of postings in

memory

Lossless vs. lossy compression
What is the difference between lossy and lossless compression
techniques?

Lossless compression: All information is preserved
Lossy compression: Discard some information, but attempt to keep
information that is relevant

n  Several of the preprocessing steps can be viewed as lossy
compression: case folding, stop words, stemming, number
elimination.

n  Prune postings entries that are unlikely to turn up in the top k list for
any query

Where else have you seen lossy and lossless compresion
techniques?

The dictionary

If I asked you to implement it right now, how would
you do it?

How much memory would this use?

word 1

word 2

word n

…

8

The dictionary

Array of fixed-width entries
~400K terms; 28 bytes/term = 11.2 MB.

Terms Freq. Postings ptr.

a 656,265

aachen 65

…. ….

zulu 221

20 bytes 4 bytes each
(assuming 32-bit) (assume 1byte chars)

Fixed-width terms are wasteful

Any problems with this approach?
n  Most of the bytes in the Term column are wasted – we allocate 20

bytes for 1 letter terms
n  And we still can’t handle supercalifragilisticexpialidocious

Written English averages ~4.5 characters/word
n  Is this the number to use for estimating the dictionary size?

Ave. dictionary word in English: ~8 characters
n  Short words dominate token counts but not type average

Any ideas?

Store the dictionary as one long string

Gets ride of wasted space

If the average word is 8 characters, what is our savings
over the 20 byte representation?
n  Theoretically, 60%
n  Any issues?

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Dictionary-as-a-String
Store dictionary as a (long) string of characters:

n  Pointer to next word shows end of current word

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

Total string length =
400K x 8B = 3.2MB

Pointers resolve 3.2M
positions: log23.2M =

22bits = 3bytes

How much memory to store the pointers?

9

Space for dictionary as a string

Fixed-width
n  20 bytes per term = 8 MB

As a string
n  5.6 MB (3.2 for dictionary and 2.4 for pointers)

30% reduction!

Still a long way from 60%. Any way we can store
less pointers?

Blocking

Store pointers to every kth term string

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

What else do we need?

Blocking

Store pointers to every kth term string
n  Example below: k = 4

Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

⎫ Save 9 bytes
⎬ on 3
⎭ pointers.

Lose 4 bytes on
term lengths.

Net

Where we used 3 bytes/pointer without blocking
n  3 x 4 = 12 bytes for k=4 pointers,

now we use 3+4=7 bytes for 4 pointers.

Shaved another ~0.5MB; can save more with larger k.

Why not go with larger k?

10

Dictionary search without blocking

How would we search for a dictionary entry?

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

Dictionary search without blocking

Binary search

Assuming each dictionary
term is equally likely in query
(not really so in practice!),
average number of
comparisons = ?

(1 + 2*2+4*3+4)/8 = 2.6

Dictionary search with blocking

What about with blocking?

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

Dictionary search with blocking

Binary search down to 4-term block
n  Then linear search through terms in block.

Blocks of 4 (binary tree), avg. = ?
 (1+2·2+2·3+2·4+5)/8 = 3 compares

11

More improvements…

We’re storing the words in sorted order

Any way that we could further compress this block?

8automata8automate9automatic10automation

Front coding

Front-coding:
Sorted words commonly have long common prefixes
– store differences only (for last k-1 in a block of k)
8automata8automate9automatic10automation

→8automat*a1e2ic3ion

Encodes automat Extra length
beyond automat

Begins to resemble general string compression

RCV1 dictionary compression
Technique Size in MB

Fixed width 11.2

String with pointers to every term 7.6

Blocking k = 4 7.1

Blocking + front coding 5.9

Postings compression
The postings file is much larger than the dictionary, by a factor of at
least 10

A posting for our purposes is a docID

Regardless of our postings list data structure, we need to store all
of the docIDs

For Reuters (800,000 documents), we would use 32 bits per docID
when using 4-byte integers

Alternatively, we can use log2 800,000 ≈ 20 bits per docID

12

Postings: two conflicting forces
Where is most of the storage going?

Frequent terms will occur in most of the documents and require a
lot of space

A term like the occurs in virtually every doc, so 20 bits/posting is
too expensive.

n  Prefer 0/1 bitmap vector in this case

A term like arachnocentric occurs in maybe one doc out of a
million – we would like to store this posting using log2 1M ~ 20 bits.

Postings file entry

We store the list of docs containing a term in increasing
order of docID.

n  computer: 33,47,154,159,202 …

Is there another way we could store this sorted data?
Store gaps: 33,14,107,5,43 …

n  14 = 47-33
n  107 = 154 – 47
n  5 = 159 - 154

Fixed-width

How many bits do we need to encode the gaps?

Does this buy us anything?

Variable length encoding

Aim:
n  For arachnocentric, we will use ~20 bits/gap entry
n  For the, we will use ~1 bit/gap entry

Key challenge: encode every integer (gap) with as few
bits as needed for that integer

1, 5, 5000, 1, 1524723, …

for smaller integers, use fewer bits
for larger integers, use more bits

13

Variable length coding

1, 5, 5000, 1, 1124 …

1, 101, 1001110001, 1, 10001100101 …

Fixed width:

000000000100000001011001110001 …

every 10 bits

Variable width:

11011001110001110001100101 …

?

Variable Byte (VB) codes

Rather than use 20 bits, i.e. record gaps with the
smallest number of bytes to store the gap

1, 101, 1001110001

00000001, 00000101, 00000010 01110001

1 byte 1 byte 2 bytes

00000001000001010000001001110001

?

VB codes

Reserve the first bit of each byte as the continuation bit

If the bit is 1, then we’re at the end of the bytes for the gap

If the bit is 0, there are more bytes to read

For each byte used, how many bits of the gap are we
storing?

1, 101, 1001110001

100000011000010100000100 11110001

Example
docIDs 824 829 215406
gaps 5 214577
VB code 00000110

10111000
10000101 00001101

00001100
10110001

Postings stored as the byte concatenation
000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte.

14

Other variable codes

Instead of bytes, we can also use a different “unit of
alignment”: 32 bits (words), 16 bits, 4 bits (nibbles) etc.

What are the pros/cons of a smaller/larger unit of
alignment?

n  Larger units waste less space on continuation bits (1 of 32 vs.
1 of 8)

n  Smaller unites waste less space on encoding smaller number,
e.g. to encode ‘1’ we waste (6 bits vs. 30 bits)

More codes

Still seems wasteful

What is the major challenge for these variable length codes?

We need to know the length of the number!

Idea: Encode the length of the number so that we know how many bits
to read

100000011000010100000100 11110001

Gamma codes

Represent a gap as a pair length and offset

offset is G in binary, with the leading bit cut off

n  13 → 1101 → 101
n  17 → 10001 → 0001
n  50 → 110010 → 10010

length is the length of offset

n  13 (offset 101), it is 3
n  17 (offset 0001), it is 4
n  50 (offset 10010), it is 5

Encoding the length
We’ve stated what the length is, but not how to encode it

What is a requirement of our length encoding?

n  Lengths will have variable length (e.g. 3, 4, 5 bits)
n  We must be able to decode it without any ambiguity

Any ideas?

Unary code

n  Encode a number n as n 1’s, followed by a 0, to mark the end of it
n  5 → 111110
n  12 → 1111111111110

15

Gamma code examples
number length offset γ-code

0
1
2
3
4
9

13
24

511
1025

Gamma code examples
number length offset γ-code

0 none
1 0 0
2 10 0 10,0
3 10 1 10,1
4 110 00 110,00
9 1110 001 1110,001

13 1110 101 1110,101
24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

Gamma code properties
Uniquely prefix-decodable, like VB

All gamma codes have an odd number of bits

What is the fewest number of bits we could expect to express a
gap (without any other knowledge of the other gaps)?

n  log2 (gap)

How many bits do gamma codes use?

n  2 ⎣log2 (gap)⎦ +1 bits
n  Almost within a factor of 2 of best possible

Gamma seldom used in practice

Machines have word boundaries – 8, 16, 32 bits

Compressing and manipulating at individual bit-
granularity will slow down query processing

Variable byte alignment is potentially more efficient

Regardless of efficiency, variable byte is conceptually
simpler at little additional space cost

16

RCV1 compression
Data structure Size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k = 4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, γ-encoded 101.0

Index compression summary
We can now create an index for highly efficient Boolean
retrieval that is very space efficient

Only 4% of the total size of the collection

Only 10-15% of the total size of the text in the collection

However, we’ve ignored positional information

Hence, space savings are less for indexes used in practice

n  But techniques substantially the same

