
1

Text Pre-processing and  
Faster Query Processing"

David Kauchak

cs458
Fall 2012

adapted from:
http://www.stanford.edu/class/cs276/handouts/lecture2-Dictionary.ppt

Administrative

n  Tuesday office hours changed:
n  2-3pm

n  Homework 1 due Tuesday

n  Assignment 1
n  Due next Friday

n  Can work with a partner
n  Start on it before next week!

n  Lunch talk Friday 12:30-1:30

Outline for today

Query optimization: handling queries with more than two terms

Making the merge faster…

Phrase queries

Text pre-processing

Tokenization

Token normalization

Regex (time permitting)

The	 merge	
Walk	 through	 the	 two	 pos2ngs	 simultaneously	

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Brutus AND Caesar

2

Merging	
What	 about	 an	 arbitrary	 Boolean	 formula?	
(Brutus	 OR	 Caesar)	 AND	 NOT	 (Antony	 OR	 Cleopatra)	

n  x	 =	 (Brutus	 OR	 Caesar)	
n  y	 =	 (Antony	 OR	 Cleopatra)	
n  x	 AND	 NOT	 y	

	
Is	 there	 an	 upper	 bound	 on	 the	 running	 2me?	

n  O(total_terms	 *	 query_terms)	
	

Query	 op2miza2on	
What about:
 Brutus AND Calpurnia AND Caesar

(Brutus AND Calpurnia) AND Caesar

Brutus AND (Calpurnia AND Caesar)

Query	 op2miza2on	

Consider	 a	 query	 that	 is	 an	 AND	 of	 t	 terms.	
	
For	 each	 of	 the	 terms,	 get	 its	 pos2ngs,	 then	 AND	 them	 together	
	
What	 is	 the	 best	 order	 for	 query	 processing?	

Query: Brutus AND Calpurnia AND Caesar

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Query	 op2miza2on	 example	
Heuris2c:	 Process	 in	 order	 of	 increasing	 freq:	

n  merge	 the	 two	 terms	 with	 the	 shortest	 pos5ngs	 list	
n  this	 creates	 a	 new	 AND	 query	 with	 one	 less	 term	
n  repeat	

Execute the query as (Caesar AND Brutus) AND Calpurnia.

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

3

Query	 op2miza2on	

Consider	 a	 query	 that	 is	 an	 OR	 of	 t	 terms.	

What	 is	 the	 best	 order	 for	 query	 processing?	

Same:	 s2ll	 want	 to	 merge	 the	 shortest	 pos2ngs	 lists	 first	

Query: Brutus OR Calpurnia OR Caesar

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Query	 op2miza2on	 in	 general	

(madding	 OR	 crowd)	 AND	 (ignoble	 OR	 NOT	 strife)	

Need	 to	 evaluate	 OR	 statements	 first	
Which	 OR	 should	 we	 do	 first?	

n  Es2mate	 the	 size	 of	 each	 OR	 by	 the	 sum	 of	 the	 pos2ng	
list	 lengths	

n  NOT	 is	 just	 the	 number	 of	 documents	 minus	 the	 length	
n  Then,	 it	 looks	 like	 an	 AND	 query:	

n  x	 AND	 y	

Outline for today

Query optimization: handling queries with more than two terms

Making the merge faster…

Phrase queries

Text pre-processing

Tokenization

Token normalization

Regex (time permitting)

The merge

Walk through the two lists simultaneously

12	

128 2 4 8 16 32 64

1

word1

word2

Can we make it any faster?
Can we augment the data structure?

O(length1 + length2)

200

4

Augment postings with skip
pointers (at indexing time)

How does this help?

128 2 4 8 41 48 64

31 1 2 3 8 11 17 21
31 11

41 128

Query processing with skip
pointers

128 2 4 8 41 48 64

31 1 2 3 8 11 17 21
31 11

16 128

Query processing with skip
pointers

128 2 4 8 41 48 64

31 1 2 3 8 11 17 21
31 11

16 128

Query processing with skip
pointers

128 2 4 8 41 48 64

31 1 2 3 8 11 17 21
31 11

16 128

we skip these entries

5

Where do we place skips?

Tradeoff:
n  More skips → shorter skip spans ⇒ more

likely to skip. But lots of comparisons to skip
pointers. More storage required.

n  Fewer skips → few pointer comparison, but
then long skip spans ⇒ few successful skips

Placing skips

Simple heuristic: for postings of length L, use
√L evenly-spaced skip pointers.

n  ignores word distribution

Are there any downsides to skip lists?
The I/O cost of loading a bigger postings list can outweigh
the gains from quicker in memory merging! (Bahle et al.
2002)

A lot of what we’ll see in the class are options. Depending
on the situation some may help, some may not.

Outline for today

Query optimization: handling queries with more than two terms

Making the merge faster…

Phrase queries

Text pre-processing

Tokenization

Token normalization

Regex (time permitting)

Phrase queries

We want to be able to answer queries such as
“middlebury college”

“I went to a college in middlebury” would not a match
n  The concept of phrase queries has proven easily

understood by users

n  Many more queries are implicit phrase queries

How can we modify our existing postings
lists to support this?

6

Positional indexes

In the postings, store a list of the positions in the
document where the term occurred

2 4 8 16 word1

2: 〈3,16,20〉 word1 4: 〈39〉 8: 〈4, 18, 40〉 16: 〈7〉

docID: 〈position1,position2,…〉

Positional index example

be:
1: 〈7,18,33,72,86,231〉
2: 〈3,149〉
4: 〈17,191,291,430,434〉
5: 〈363, 367〉

to:
1: 〈4,17,32, 90〉
2: 〈5, 50〉
4: 〈12,13,429,433,500〉
5: 〈4,15,24,38,366〉

1.  Looking only at the “be”
postings list, which document(s)
could contain “to be or not to
be”?

2.  Using both postings list, which
document(s) could contain “to
be or not to be”?

3.  Describe an algorithm that
discovers the answer to question
2 (hint: think about our linear
“merge” procedure)

Processing a phrase query:
“to be”

Find all documents that have have the terms using the
“merge” procedure

For each of these documents, “merge” the position lists with
the positions offset depending on where in the query the
word occurs

be:
4: 〈17,191,291,430,434〉

to:
4: 〈12,13,429,433,500〉

be:
4: 〈17,191,291,430,434〉

to:
4: 〈13,14,430,434,501〉

Processing a phrase query:
“to be”

Find all documents that have have the terms using the
“merge” procedure

For each of these documents, “merge” the position lists with
the positions offset depending on where in the query the
word occurs

be:
4: 〈17,191,291,430,434〉

to:
4: 〈12,13,429,433,500〉

be:
4: 〈17,191,291,430,434〉

to:
4: 〈13,14,430,434,501〉

7

What about proximity queries?

Find “middlebury” within k words of “college”

Similar idea, but a bit more challenging

Naïve algorithm for merging position lists
n  Assume we have access to a merge with offset exactly i

procedure (similar to phrase query matching)
n  for i = 1 to k

n  if merge with offset i matches, return a match

n  if merge with offset -i matches, return a match

Is this efficient?
No, Naïve algorithm is inefficient, but doing it efficiently is a
bit tricky

Positional index size

How does positional indices affect the posting list
size?

Makes it significantly larger!

Rather than only keeping track of whether or word
occurs or not, have all occurrences of a word

Positional index size

Average web page has <1000 terms

SEC filings, books, even some epic poems … easily 100,000 terms

Consider a term with frequency 0.1%

100,000

? 1000

Positional postings Postings Document size

Positional index size

? 100,000

1 1000

Positional postings Postings Document size

Average web page has <1000 terms

SEC filings, books, even some epic poems … easily 100,000 terms

Consider a term with frequency 0.1%

8

Positional index size

1 100,000

? 1 1000

Positional postings Postings Document size

Average web page has <1000 terms

SEC filings, books, even some epic poems … easily 100,000 terms

Consider a term with frequency 0.1%

Positional index size

? 1 100,000

1-2 1 1000

Positional postings Postings Document size

Average web page has <1000 terms

SEC filings, books, even some epic poems … easily 100,000 terms

Consider a term with frequency 0.1%

Positional index size

100 1 100,000

1-2 1 1000

Positional postings Postings Document size

Average web page has <1000 terms

SEC filings, books, even some epic poems … easily 100,000 terms

Consider a term with frequency 0.1%

Rules of thumb

A positional index is 2–4 as large as a non-positional
index

Positional index size 35–50% of volume of original text

Caveat: all of this holds for “English-like” languages

9

Popular phrases

Is there a way we could speed up common/popular
phrase queries?

n  “Michael Jackson”

n  “Britney Spears”

n  “New York”

We can store the phrase as another term in our
dictionary with it’s own postings list

This avoids having do do the “merge” operation
for these frequent phrases

Outline for today

Query optimization: handling queries with more than two terms

Making the merge faster…

Phrase queries

Text pre-processing

Tokenization

Token normalization

Regex (time permitting)

Inverted index construction

Documents to
be indexed

Friends, Romans, countrymen.

indexer

Inverted index

friend

roman

countryman

2 4

2

13 16

1

text preprocessing friend , roman , countrymen .

What’s in a document?
I give you a file I downloaded. You know it has text in it.

What are the challenges in determining what characters are in the
document?

File format:

http://www.google.com/help/faq_filetypes.html

10

What’s in a document?

Language:
n  莎, ∆, Tübingen, …
n  Sometimes, a document can contain multiple languages

(like this one :)

Character set/encoding

n  UTF-8
n  How do we go from the binary to the characters?

Decoding

n  zipped/compressed file
n  character entities, e.g. ‘ ’

What is a “document”?

A postings list is a list of documents

What about:

n  a web page
n  a book
n  a report/article with multiple sections
n  an e-mail
n  an e-mail with attachments
n  a powerpoint file
n  an xml document

What amount of text is considered a “document” for these lists?

2 4 8 16 32 64 128 word

Text pre-processing

Assume we’ve figured all of this out and we now have a
stream of characters that is our document

“Friends, Romans, Countrymen …”

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Dictionary What goes in our dictionary?

Text pre-processing

A token is a sequence of characters that are grouped
together as a semantic unit

A term is an entry in the dictionary

Multiple tokens may map to the same term:

Romans

roman

roamns

roman

token term

11

Text pre-processing

Determining the tokens and terms are the two
major pre-processing steps

“Friends, Romans and Countrymen …”

tokenization Friends , Romans , Countrymen

token normalization
(determining terms)

friend roman countrymen

Outline for today

Query optimization: handling queries with more than two terms

Making the merge faster…

Phrase queries

Text pre-processing

Tokenization

Token normalization

Regex (time permitting)

Basic tokenization

If I asked you to break a text into tokens, what
might you try?

Split tokens on whitespace
Split or throw away punctuation characters

Tokenization issues: ‘

Finland’s capital…

?

12

Tokenization issues: ‘

Finland’s capital…

Finland Finland ‘ s

Finland ‘s Finlands

Finland’s

What are the benefits/drawbacks?

Finland s

Tokenization issues: ‘

Aren’t we …

?

Tokenization issues: ‘

Aren’t we …

Aren’t Arent

Are n’t Aren t

Tokenization issues: hyphens

Hewlett-Packard

?

state-of-the-art

co-education lower-case

13

Tokenization issues: hyphens

Hewlett-Packard state-of-the-art

co-education lower-case

Keep as is

merge together

n  HewlettPackard

n  stateoftheart

Split on hyphen
n  lower case
n  co education

What are the
benefits/drawbacks?

More tokenization issues

Compound nouns: San Francisco, Los Angeles,
…

n  One token or two?

Numbers
n  Examples

n  Dates: 3/12/91

n  Model numbers: B-52

n  Domain specific numbers: PGP key - 324a3df234cb23e

n  Phone numbers: (800) 234-2333

n  Scientific notation: 1.456 e-10

Tokenization: language issues

Opposite problem we saw with English (San Francisco)

German compound nouns are not segmented

German retrieval systems frequently use a compound
splitter module

Lebensversicherungsgesellschaftsangestellter

‘life insurance company employee’

Tokenization: language issues

Chinese and Japanese have no spaces between words
n  A word can be made up of one or more characters
n  There is ambiguity about the tokenization, i.e. more than one

way to break the characters into words
n  Word segmentation problem

莎拉波娃现在居住在美国东南部的佛罗里达。

Where are the words?

thisissue ?

this issue this is sue

14

Outline for today

Query optimization: handling queries with more than two terms

Making the merge faster…

Phrase queries

Text pre-processing

Tokenization

Token normalization

Regex (time permitting)

Token normalization/
Dictionary construction

We now have the documents as a stream of tokens

We have two decisions to make:
n  Are we going to keep all of the tokens?

n  punctuation?
n  common words, “to”, “the”, “a”

n  What will be our terms, i.e. our dictionary entries
n  Determine a mapping from tokens to terms

Friends , Romans , Countrymen

Punctuation characters

Most search engines do not index most punctuation characters:
, . % $ @ ! + - () ^ # ~ ` ' " = : ; ? / \ |

Punctuation characters

Although there are sometimes exceptions…

15

Stop words

With a stop list, you exclude from the index/dictionary
the most common words

Pros:
n  They have little semantic content: the, a, and, to, be

n  There are a lot of them: ~30% of postings for top 30 words

Cons

n  Phrase queries: “King of Denmark”

n  Song titles, etc.: “Let it be”, “To be or not to be”

n  “Relational” queries: “flights to London”

Stop words

The trend for search engines is to not use stop lists
n  Good compression techniques mean the space for including stop

words in a system is very small
n  Good query optimization techniques mean you pay little at query

time for including stop words

Token normalization

Want to find a many to one mapping from tokens
to terms

Pros

n  smaller dictionary size
n  increased recall (number of documents returned)

Cons
n  decrease in specificity, e.g. can’t differentiate between

plural non-plural
n  exact quotes
n  decrease in precision (match documents that aren’t

relevant)

Two approaches to normalization

Implicitly define equivalence classes of terms by
performing operations on tokens

n  deleting periods in a term

n  removing trailing letters (e.g. ‘s’)

Alternative is to do expansion. Start with a list of
terms and expand to possible tokens

n  window → Window, Windows, window, windows
n  Potentially more powerful, but less efficient

16

Token normalization
Abbreviations - remove periods

n  I.B.M. → IBM
n  N.S.A. → N.S.A
n  Google example: C.A.T. → Cat not Caterpiller Inc.

Token normalization
Numbers

n  Keep (try typing random numbers into a search engine)
n  Remove: can be very useful: think about things like

looking up error codes/stack-traces on the web
n  Identify types, like date, IP, …
n  Flag as a generic “number”

Token normalization
Dates

n  11/13/2007
n  13/11/2007

n  November 13, 2007

n  Nov. 13, 2007

n  Nov 13 ‘07

Token normalization

Dates
n  11/13/2007
n  13/11/2007
n  November 13, 2007
n  Nov. 13, 2007
n  Nov 13 ‘07

17

Token normalization: lowercasing

Reduce all letters to lowercase
n  “New policies in …” → “new policies in …”

Any problems with this?
n  Can change the meaning

n  Sue vs. sue

n  Fed vs. fed

n  SAIL vs. sail

n  CAT vs. cat

Often best to lower case everything, since users
will use lowercase regardless of ‘correct’
capitalization…

Stemming

Reduce terms to their “roots” before indexing

The term “stemming” is used since it is
accomplished mostly by chopping off part of the
suffix of the word

automate
automates
automatic
automation

run
runs
running

automat

run

Stemming example

Take a cours in inform retriev is more excit than most cours	

Taking a course in information retrieval is more exciting than most courses

http://maya.cs.depaul.edu/~classes/ds575/porter.html
or use the class from assign1 to try some examples out

Porter’s algorithm (1980)

Most common algorithm for stemming English
n  Results suggest it’s at least as good as other

stemming options

Multiple sequential phases of reductions using
rules, e.g.

n  sses → ss

n  ies → i

n  ational → ate
n  tional → tion

http://tartarus.org/~martin/PorterStemmer/

18

Lemmatization
Reduce inflectional/variant forms to base form

Stemming is an approximation for lemmatization

Lemmatization implies doing “proper” reduction to
dictionary headword form
e.g.,

n  am, are, is → be

n  car, cars, car's, cars' → car

the boy's cars are different colors
the boy car be different color

What normalization techniques to use…

What is the size of the corpus?
n  small corpora often require more normalization

Depends on the users and the queries

Query suggestion (i.e. “did you mean”) can often
be used instead of normalization

Most major search engines do little to normalize
data except lowercasing and removing punctuation
(and not even these always)

Outline for today

Query optimization: handling queries with more than two terms

Making the merge faster…

Phrase queries

Text pre-processing

Tokenization

Token normalization

Regex (time permitting)

Regular expressions

Regular expressions are a very powerful tool to do
string matching and processing

Allows you to do things like:

n  Tell me if a string starts with a lowercase letter, then is
followed by 2 numbers and ends with “ing” or “ion”

n  Replace all occurrences of one or more spaces with a
single space

n  Split up a string based on whitespace or periods or
commas or …

n  Give me all parts of the string where a digit is
proceeded by a letter and then the ‘#’ sign

19

A quick review of regex
features

Literals: we can put any string in regular
expression

n  “this is a test”.matches(“test”)
n  “this is a test”.matches(“hmm”)

Meta-characters

n  \w - word character (a-zA-Z_0-9)
n  \W - non word-character (i.e. everything else)
n  \d - digit (0-9)
n  \s - whitespace character (space, tab, endline, …)
n  \S - non-whitespace
n  . - matches any character

regex features

Metacharacters
n  “The year was 1988”.matches(“19\d\d”)

n  “Therearenospaceshere”.matches(“\s”)

Java and ‘\’ - annoyingly, need to escape the
backslash

n  “The year was 1988”.matches(“19\\d\\d”)

n  “Therearenospaceshere”.matches(“\\s”)

more regex features

Character classes
n  [aeiou] - matches any vowel

n  [^aeiou] - matches anything BUT the vowels

n  [a-z] - all lowercase letters

n  [0-46-9]

n  “The year was 1988”.matches(“[12]\d\d\d”)

Special characters
n  ‘^’ matches the beginning of the string

n  “^\d”

n  “^The”

More regex features

Special characters
n  ‘$’ matches the end of the string

n  “Problem 1 - 5 points:”.
matches(“^Problem \d - \d points$”)

n  “Problem 1 - 8 points”.
matches(“^Problem \d - \d points$”)

Quantifiers

n  * - zero or more times

n  + - 1 or more times

n  ? - once or not at all
n  “^\d+”

n  “[A-Z][a-z]*”

n  “Runners?”

20

Regex in java

n  java.util.regex.*
n  Patterns
n  Matcher

n  For any string:
n  string.matches(regex) - returns true if the string

matches the pattern (remember, if it doesn’t have ‘^’
or ‘$’ than it can match part of the string)

n  string.split(regex) - split up the string where the
delimiter is all matches of the expression

n  string.replaceAll(regex, replace) - replace all matches
of “regex” with “replace”

n  LOTS of resources out there!
n  http://java.sun.com/docs/books/tutorial/essential/regex/intro.html
n  http://java.sun.com/j2se/1.4.2/docs/api/java/util/

regex/package-summary.html

