
1 

Text Pre-processing and  
Faster Query Processing"

David Kauchak 

cs458 
Fall 2012 

adapted from: 
http://www.stanford.edu/class/cs276/handouts/lecture2-Dictionary.ppt 

Administrative 

n  Tuesday office hours changed: 
n  2-3pm 

n  Homework 1 due Tuesday 

n  Assignment 1 
n  Due next Friday 

n  Can work with a partner 
n  Start on it before next week! 

n  Lunch talk Friday 12:30-1:30 

Outline for today 

Query optimization: handling queries with more than two terms 

 
Making the merge faster… 

 

Phrase queries 

 

Text pre-processing 
 

Tokenization 

 

Token normalization 

 
Regex (time permitting) 

The	  merge	  
Walk	  through	  the	  two	  pos2ngs	  simultaneously	  

128 

34 

2 4 8 16 32 64 

1 2 3 5 8 13 21 

Brutus 

Caesar 

Brutus AND Caesar 
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Merging	  
What	  about	  an	  arbitrary	  Boolean	  formula?	  
(Brutus	  OR	  Caesar)	  AND	  NOT	  (Antony	  OR	  Cleopatra)	  

n  x	  =	  (Brutus	  OR	  Caesar)	  
n  y	  =	  (Antony	  OR	  Cleopatra)	  
n  x	  AND	  NOT	  y	  

	  
Is	  there	  an	  upper	  bound	  on	  the	  running	  2me?	  

n  O(total_terms	  *	  query_terms)	  
	  

Query	  op2miza2on	  
What about: 
 Brutus AND Calpurnia AND Caesar 

(Brutus AND Calpurnia) AND Caesar 

Brutus AND (Calpurnia AND Caesar) 

Query	  op2miza2on	  

Consider	  a	  query	  that	  is	  an	  AND	  of	  t	  terms.	  
	  
For	  each	  of	  the	  terms,	  get	  its	  pos2ngs,	  then	  AND	  them	  together	  
	  
What	  is	  the	  best	  order	  for	  query	  processing?	  

Query: Brutus AND Calpurnia AND Caesar 

Brutus 

Calpurnia 

Caesar 

2 4 8 16 32 64 128 

2 3 5 8 13 21 34 

13 16 

1 

Query	  op2miza2on	  example	  
Heuris2c:	  Process	  in	  order	  of	  increasing	  freq:	  

n  merge	  the	  two	  terms	  with	  the	  shortest	  pos5ngs	  list	  
n  this	  creates	  a	  new	  AND	  query	  with	  one	  less	  term	  
n  repeat	  

Execute the query as (Caesar AND Brutus) AND Calpurnia. 

Brutus 

Calpurnia 

Caesar 

2 4 8 16 32 64 128 

2 3 5 8 13 21 34 

13 16 

1 
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Query	  op2miza2on	  

Consider	  a	  query	  that	  is	  an	  OR	  of	  t	  terms.	  

What	  is	  the	  best	  order	  for	  query	  processing?	  

Same:	  s2ll	  want	  to	  merge	  the	  shortest	  pos2ngs	  lists	  first	  

Query: Brutus OR Calpurnia OR Caesar 

Brutus 

Calpurnia 

Caesar 

2 4 8 16 32 64 128 

2 3 5 8 13 21 34 

13 16 

1 

Query	  op2miza2on	  in	  general	  

(madding	  OR	  crowd)	  AND	  (ignoble	  OR	  NOT	  strife)	  

Need	  to	  evaluate	  OR	  statements	  first	  
Which	  OR	  should	  we	  do	  first?	  

n  Es2mate	  the	  size	  of	  each	  OR	  by	  the	  sum	  of	  the	  pos2ng	  
list	  lengths	  

n  NOT	  is	  just	  the	  number	  of	  documents	  minus	  the	  length	  
n  Then,	  it	  looks	  like	  an	  AND	  query:	  

n  x	  AND	  y	  

Outline for today 

Query optimization: handling queries with more than two terms 

 
Making the merge faster… 

 

Phrase queries 

 

Text pre-processing 
 

Tokenization 

 

Token normalization 

 
Regex (time permitting) 

The merge 

Walk through the two lists simultaneously 

12	  

128 2 4 8 16 32 64 

1 

word1 

word2 

Can we make it any faster? 
Can we augment the data structure? 

O(length1 + length2) 

200 
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Augment postings with skip 
pointers (at indexing time) 

How does this help? 

128 2 4 8 41 48 64 

31 1 2 3 8 11 17 21 
31 11 

41 128 

Query processing with skip 
pointers 

128 2 4 8 41 48 64 

31 1 2 3 8 11 17 21 
31 11 

16 128 

Query processing with skip 
pointers 

128 2 4 8 41 48 64 

31 1 2 3 8 11 17 21 
31 11 

16 128 

Query processing with skip 
pointers 

128 2 4 8 41 48 64 

31 1 2 3 8 11 17 21 
31 11 

16 128 

we skip these entries 
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Where do we place skips? 

Tradeoff: 
n  More skips → shorter skip spans ⇒ more 

likely to skip.  But lots of comparisons to skip 
pointers. More storage required. 

n  Fewer skips → few pointer comparison, but 
then long skip spans ⇒ few successful skips 

Placing skips 

Simple heuristic: for postings of length L, use 
√L evenly-spaced skip pointers. 

n  ignores word distribution 

Are there any downsides to skip lists? 
The I/O cost of loading a bigger postings list can outweigh 
the gains from quicker in memory merging! (Bahle et al. 
2002) 

A lot of what we’ll see in the class are options. Depending 
on the situation some may help, some may not. 

Outline for today 

Query optimization: handling queries with more than two terms 

 
Making the merge faster… 

 

Phrase queries 

 

Text pre-processing 
 

Tokenization 

 

Token normalization 

 
Regex (time permitting) 

Phrase queries 

We want to be able to answer queries such as 
“middlebury college” 

 

“I went to a college in middlebury” would not a match 
n  The concept of phrase queries has proven easily 

understood by users 

n  Many more queries are implicit phrase queries 

How can we modify our existing postings 
lists to support this? 
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Positional indexes 

In the postings, store a list of the positions in the 
document where the term occurred 

2 4 8 16 word1 

2: 〈3,16,20〉 word1 4: 〈39〉 8: 〈4, 18, 40〉 16: 〈7〉 

docID: 〈position1,position2,…〉 

Positional index example 

be: 
1: 〈7,18,33,72,86,231〉 
2: 〈3,149〉 
4: 〈17,191,291,430,434〉 
5: 〈363, 367〉 

to: 
1: 〈4,17,32, 90〉 
2: 〈5, 50〉 
4: 〈12,13,429,433,500〉 
5: 〈4,15,24,38,366〉 

1.  Looking only at the “be” 
postings list, which document(s) 
could contain “to be or not to 
be”? 

2.  Using both postings list, which 
document(s) could contain “to 
be or not to be”? 

3.  Describe an algorithm that 
discovers the answer to question 
2 (hint: think about our linear 
“merge” procedure) 

Processing a phrase query:  
“to be” 

Find all documents that have have the terms using the 
“merge” procedure 
 
For each of these documents, “merge” the position lists with 
the positions offset depending on where in the query the 
word occurs 

be: 
4: 〈17,191,291,430,434〉 

to: 
4: 〈12,13,429,433,500〉 

be: 
4: 〈17,191,291,430,434〉 

to: 
4: 〈13,14,430,434,501〉 

Processing a phrase query:  
“to be” 

Find all documents that have have the terms using the 
“merge” procedure 
 
For each of these documents, “merge” the position lists with 
the positions offset depending on where in the query the 
word occurs 

be: 
4: 〈17,191,291,430,434〉 

to: 
4: 〈12,13,429,433,500〉 

be: 
4: 〈17,191,291,430,434〉 

to: 
4: 〈13,14,430,434,501〉 
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What about proximity queries? 

Find “middlebury” within k words of “college” 

 
Similar idea, but a bit more challenging 

Naïve algorithm for merging position lists 
n  Assume we have access to a merge with offset exactly i 

procedure (similar to phrase query matching) 
n  for i = 1 to k 

n  if merge with offset i matches, return a match 

n  if merge with offset -i matches, return a match 

Is this efficient? 
No, Naïve algorithm is inefficient, but doing it efficiently is a 
bit tricky 

Positional index size 

How does positional indices affect the posting list 
size? 

 

 
Makes it significantly larger! 

 
Rather than only keeping track of whether or word 
occurs or not, have all occurrences of a word 

Positional index size 

Average web page has <1000 terms 

 
SEC filings, books, even some epic poems … easily 100,000 terms 

 

Consider a term with frequency 0.1% 

100,000 

? 1000 

Positional postings Postings Document size 

Positional index size 

? 100,000 

1 1000 

Positional postings Postings Document size 

Average web page has <1000 terms 

 
SEC filings, books, even some epic poems … easily 100,000 terms 

 

Consider a term with frequency 0.1% 
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Positional index size 

1 100,000 

? 1 1000 

Positional postings Postings Document size 

Average web page has <1000 terms 

 
SEC filings, books, even some epic poems … easily 100,000 terms 

 

Consider a term with frequency 0.1% 

Positional index size 

? 1 100,000 

1-2 1 1000 

Positional postings Postings Document size 

Average web page has <1000 terms 

 
SEC filings, books, even some epic poems … easily 100,000 terms 

 

Consider a term with frequency 0.1% 

Positional index size 

100 1 100,000 

1-2 1 1000 

Positional postings Postings Document size 

Average web page has <1000 terms 

 
SEC filings, books, even some epic poems … easily 100,000 terms 

 

Consider a term with frequency 0.1% 

Rules of thumb 

A positional index is 2–4 as large as a non-positional 
index 

 

Positional index size 35–50% of volume of original text 
 

Caveat: all of this holds for “English-like” languages 
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Popular phrases 

Is there a way we could speed up common/popular 
phrase queries? 

n  “Michael Jackson” 

n  “Britney Spears” 

n  “New York” 

 
We can store the phrase as another term in our 
dictionary with it’s own postings list 
 

This avoids having do do the “merge” operation 
for these frequent phrases 

Outline for today 

Query optimization: handling queries with more than two terms 

 
Making the merge faster… 

 

Phrase queries 

 

Text pre-processing 
 

Tokenization 

 

Token normalization 

 
Regex (time permitting) 

Inverted index construction 

Documents to 
be indexed 

Friends, Romans, countrymen. 

indexer 

Inverted index 

friend 

roman 

countryman 

2 4 

2 

13 16 

1 

text preprocessing friend , roman , countrymen . 

What’s in a document? 
I give you a file I downloaded.  You know it has text in it. 
 

What are the challenges in determining what characters are in the 
document? 

File format: 

http://www.google.com/help/faq_filetypes.html 



10 

What’s in a document? 

Language: 
n  莎, ∆, Tübingen, … 
n  Sometimes, a document can contain multiple languages 

(like this one :) 
 
Character set/encoding 

n  UTF-8 
n  How do we go from the binary to the characters? 

 
Decoding 

n  zipped/compressed file 
n  character entities, e.g. ‘&nbsp;’ 

What is a “document”? 

A postings list is a list of documents 

 
What about: 

n  a web page 
n  a book 
n  a report/article with multiple sections 
n  an e-mail 
n  an e-mail with attachments 
n  a powerpoint file 
n  an xml document 

What amount of text is considered a “document” for these lists? 

2 4 8 16 32 64 128 word 

Text pre-processing 

Assume we’ve figured all of this out and we now have a 
stream of characters that is our document 

“Friends, Romans, Countrymen …” 

Brutus 

Calpurnia 

Caesar 

2 4 8 16 32 64 128 

2 3 5 8 13 21 34 

13 16 

1 

Dictionary What goes in our dictionary? 

Text pre-processing 

A token is a sequence of characters that are grouped 
together as a semantic unit 

 

A term is an entry in the dictionary 

Multiple tokens may map to the same term: 

Romans 

roman 

roamns 

roman 

token term 
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Text pre-processing 

Determining the tokens and terms are the two 
major pre-processing steps 

“Friends, Romans and Countrymen …” 

tokenization Friends , Romans , Countrymen 

token normalization 
(determining terms) 

friend roman countrymen 

Outline for today 

Query optimization: handling queries with more than two terms 

 
Making the merge faster… 

 

Phrase queries 

 

Text pre-processing 
 

Tokenization 

 

Token normalization 

 
Regex (time permitting) 

Basic tokenization 

If I asked you to break a text into tokens, what 
might you try? 

Split tokens on whitespace 
Split or throw away punctuation characters 

Tokenization issues: ‘ 

Finland’s capital… 

? 
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Tokenization issues: ‘ 

Finland’s capital… 

Finland Finland ‘ s 

Finland ‘s Finlands 

Finland’s 

What are the benefits/drawbacks? 

Finland s 

Tokenization issues: ‘ 

Aren’t we … 

? 

Tokenization issues: ‘ 

Aren’t we … 

Aren’t Arent 

Are n’t Aren t 

Tokenization issues: hyphens 

Hewlett-Packard 

? 

state-of-the-art 

co-education lower-case 
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Tokenization issues: hyphens 

Hewlett-Packard state-of-the-art 

co-education lower-case 

Keep as is 

 
merge together 

n  HewlettPackard 

n  stateoftheart 

 

Split on hyphen 
n  lower case 
n  co education 

What are the 
benefits/drawbacks? 

More tokenization issues 

Compound nouns: San Francisco, Los Angeles, 
… 

n  One token or two? 
 

Numbers 
n  Examples 

n  Dates: 3/12/91 

n  Model numbers: B-52 

n  Domain specific numbers: PGP key - 324a3df234cb23e 

n  Phone numbers: (800) 234-2333 

n  Scientific notation: 1.456 e-10 

Tokenization: language issues 

Opposite problem we saw with English (San Francisco) 
 

German compound nouns are not segmented 

 

German retrieval systems frequently use a compound 
splitter module 

Lebensversicherungsgesellschaftsangestellter 

‘life insurance company employee’ 

Tokenization: language issues 

Chinese and Japanese have no spaces between words 
n  A word can be made up of one or more characters 
n  There is ambiguity about the tokenization, i.e. more than one 

way to break the characters into words 
n  Word segmentation problem 

莎拉波娃现在居住在美国东南部的佛罗里达。 

Where are the words? 

thisissue ? 

this issue this is sue 
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Outline for today 

Query optimization: handling queries with more than two terms 

 
Making the merge faster… 

 

Phrase queries 

 

Text pre-processing 
 

Tokenization 

 

Token normalization 

 
Regex (time permitting) 

Token normalization/ 
Dictionary construction 

We now have the documents as a stream of tokens 

We have two decisions to make: 
n  Are we going to keep all of the tokens? 

n  punctuation? 
n  common words, “to”, “the”, “a” 

n  What will be our terms, i.e. our dictionary entries 
n  Determine a mapping from tokens to terms 

Friends , Romans , Countrymen 

Punctuation characters 

Most search engines do not index most punctuation characters:  
, . % $ @ ! + - ( ) ^ # ~ ` ' " = : ; ? / \ | 

Punctuation characters 

Although there are sometimes exceptions… 
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Stop words 

With a stop list, you exclude from the index/dictionary 
the most common words 

 

Pros: 
n  They have little semantic content: the, a, and, to, be 

n  There are a lot of them: ~30% of postings for top 30 words 

 
Cons 

n  Phrase queries: “King of Denmark” 

n  Song titles, etc.: “Let it be”, “To be or not to be” 

n  “Relational” queries: “flights to London” 

Stop words 

The trend for search engines is to not use stop lists 
n  Good compression techniques mean the space for including stop 

words in a system is very small 
n  Good query optimization techniques mean you pay little at query 

time for including stop words 

Token normalization 

Want to find a many to one mapping from tokens 
to terms 
 
Pros 

n  smaller dictionary size 
n  increased recall (number of documents returned) 

Cons 
n  decrease in specificity, e.g. can’t differentiate between 

plural non-plural 
n  exact quotes 
n  decrease in precision (match documents that aren’t 

relevant) 

Two approaches to normalization 

Implicitly define equivalence classes of terms by 
performing operations on tokens 

n  deleting periods in a term 

n  removing trailing letters (e.g. ‘s’) 

 
Alternative is to do expansion.  Start with a list of 
terms and expand to possible tokens 

n  window → Window, Windows, window, windows 
n  Potentially more powerful, but less efficient 
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Token normalization 
Abbreviations - remove periods 

n  I.B.M. → IBM 
n  N.S.A. → N.S.A 
n  Google example: C.A.T. → Cat not Caterpiller Inc. 

 

Token normalization 
Numbers 

n  Keep (try typing random numbers into a search engine) 
n  Remove: can be very useful: think about things like 

looking up error codes/stack-traces on the web 
n  Identify types, like date, IP, … 
n  Flag as a generic “number” 

Token normalization 
Dates 

n  11/13/2007 
n  13/11/2007 

n  November 13, 2007 

n  Nov. 13, 2007 

n  Nov 13 ‘07 

Token normalization 

Dates 
n  11/13/2007 
n  13/11/2007 
n  November 13, 2007 
n  Nov. 13, 2007 
n  Nov 13 ‘07 
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Token normalization: lowercasing 

Reduce all letters to lowercase 
n  “New policies in …” → “new policies in …” 

 

Any problems with this? 
n  Can change the meaning 

n  Sue vs. sue 

n  Fed vs. fed 

n  SAIL vs. sail 

n  CAT vs. cat 

 
Often best to lower case everything, since users 
will use lowercase regardless of ‘correct’ 
capitalization… 

Stemming 

Reduce terms to their “roots” before indexing 
 

The term “stemming” is used since it is 
accomplished mostly by chopping off part of the 
suffix of the word 

automate 
automates 
automatic 
automation 

run 
runs 
running 

automat 

run 

Stemming example 

Take a cours in inform retriev is more excit than most cours	

Taking a course in information retrieval is more exciting than most courses 

http://maya.cs.depaul.edu/~classes/ds575/porter.html 
or use the class from assign1 to try some examples out 

Porter’s algorithm (1980) 

Most common algorithm for stemming English 
n  Results suggest it’s at least as good as other 

stemming options 

 

Multiple sequential phases of reductions using 
rules, e.g. 

n  sses → ss 

n  ies → i 

n  ational → ate 
n  tional → tion 

 

http://tartarus.org/~martin/PorterStemmer/ 
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Lemmatization 
Reduce inflectional/variant forms to base form 
 
Stemming is an approximation for lemmatization 
 
Lemmatization implies doing “proper” reduction to 
dictionary headword form 
e.g., 

n  am, are, is → be 

n  car, cars, car's, cars' → car 

the boy's cars are different colors 
the boy   car   be  different color 

What normalization techniques to use… 

What is the size of the corpus?   
n  small corpora often require more normalization 

 

Depends on the users and the queries 
 

Query suggestion (i.e. “did you mean”) can often 
be used instead of normalization 

 

Most major search engines do little to normalize 
data except lowercasing and removing punctuation 
(and not even these always) 

Outline for today 

Query optimization: handling queries with more than two terms 

 
Making the merge faster… 

 

Phrase queries 

 

Text pre-processing 
 

Tokenization 

 

Token normalization 

 
Regex (time permitting) 

Regular expressions 

Regular expressions are a very powerful tool to do 
string matching and processing 
 
Allows you to do things like: 

n  Tell me if a string starts with a lowercase letter, then is 
followed by 2 numbers and ends with “ing” or “ion” 

n  Replace all occurrences of one or more spaces with a 
single space 

n  Split up a string based on whitespace or periods or 
commas or … 

n  Give me all parts of the string where a digit is 
proceeded by a letter and then the ‘#’ sign 
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A quick review of regex 
features 

Literals: we can put any string in regular 
expression 

n  “this is a test”.matches(“test”) 
n  “this is a test”.matches(“hmm”) 

 
Meta-characters 

n  \w - word character (a-zA-Z_0-9) 
n  \W - non word-character (i.e. everything else) 
n  \d - digit (0-9) 
n  \s - whitespace character (space, tab, endline, …) 
n  \S - non-whitespace 
n  . - matches any character 

regex features 

Metacharacters 
n  “The year was 1988”.matches(“19\d\d”) 

n  “Therearenospaceshere”.matches(“\s”) 

 
Java and ‘\’ - annoyingly, need to escape the 
backslash 

n  “The year was 1988”.matches(“19\\d\\d”) 

n  “Therearenospaceshere”.matches(“\\s”) 

more regex features 

Character classes 
n  [aeiou] - matches any vowel 

n  [^aeiou] - matches anything BUT the vowels 

n  [a-z] - all lowercase letters 

n  [0-46-9] 

n  “The year was 1988”.matches(“[12]\d\d\d”) 

 

Special characters 
n  ‘^’ matches the beginning of the string 

n  “^\d” 

n  “^The” 

More regex features 

Special characters 
n  ‘$’ matches the end of the string 

n  “Problem 1 - 5 points:”. 
matches(“^Problem \d - \d points$”) 

n  “Problem 1 - 8 points”. 
matches(“^Problem \d - \d points$”) 

 
Quantifiers 

n  * - zero or more times 

n  + - 1 or more times 

n  ? - once or not at all 
n  “^\d+” 

n  “[A-Z][a-z]*” 

n  “Runners?” 
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Regex in java 

n  java.util.regex.* 
n  Patterns 
n  Matcher 

n  For any string: 
n  string.matches(regex) - returns true if the string 

matches the pattern (remember, if it doesn’t have ‘^’ 
or ‘$’ than it can match part of the string) 

n  string.split(regex) - split up the string where the 
delimiter is all matches of the expression 

n  string.replaceAll(regex, replace) - replace all matches 
of “regex” with “replace” 

n  LOTS of resources out there! 
n  http://java.sun.com/docs/books/tutorial/essential/regex/intro.html 
n  http://java.sun.com/j2se/1.4.2/docs/api/java/util/

regex/package-summary.html 


