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Administrative

= Assignment 4
= Two parts
= Midterm
= Average:  52.8
= Median: 52
= High: 57
» In-class “quiz”: 11/13
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Audio retrieval

text retrieval audio retrieval
corpus corpus
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What do you want from an
~audio search engine?

= Name: You might know the name of the song or the
artist

= Genre: You might try “Bebop,” “Latin Jazz,” or “"Rock”

» Instrumentation: The tenor sax, guitar, and double
bass are all featured in the song

= Emotion: The song has a “cool vibe” that is “upbeat"
with an “electric texture”

= Some other approaches to search:
= musicovery.com
= pandora.com (song similarity)
= Genius (collaborative filtering)
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Current audio search engines

What are they?

What can you search by?
How well do they work?
How could they been improved?

Challenges?
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Text Index construction
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Audio Index construction
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Audio files to bl i
be indexed

audio preprocessing
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may be keyed off of text

may be keyed off of audio features
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Sound

What is sound?

A longitudinal compression wave traveling through
some medium (often, air)

Rate of the wave is the frequency
You can think of sounds as a sum of sign waves
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Sound

How do people hear sound?
The cochlea in the inner ear has hair cells that "wiggle" when
certain frequency are encountered

cochiea
(nearing organ)
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Digital Encoding

Like everything else for computers, we must
represent audio signals digitally

Encoding formats:
WAV
MIDI
MP3
Others...
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WAV

Simple encoding
Sample sound at some interval (e.g. 44 KHz).
High sound quality

Large file sizes
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MIDI

Musical Instrument Digital Interface
MIDI is a language
Sentences describe the channel, note, loudness, etc.

16 channels (each can be thought of and recorded as a
separate instrument)

Common for audio retrieval and classification
applications
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MP3

Common compression format
3-4 MB vs. 30-40 MB for uncompressed

Perceptual noise shaping
= The human ear cannot hear certain sounds
= Some sounds are heard better than others
= The louder of two sounds will be heard

Lossy or lossless?
= Lossy compression
quality depends on the amount of compression
like many compression algorithms, can have issues with randomness (e.g.
clapping)
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MP3 Example

If there is  loud sound in one band,
the compression algorithm can
ignore all of the other bands.
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Features

‘Weight vectors

- word frequency

- count normalization
- idf weighting

- length normalization
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Tools for Feature Extraction

Fourier Transform (FT)
Short Term Fourier Transform (STFT)

Wavelets
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Fourier Transform (FT) Another FT Example

) S —

Time-domain — Frequency-domain VT M HM ‘H‘ “HH

|H\

R \

HM‘H‘W‘\“W
W ‘

Rt

[

Al
H ]
) H|“ ‘H‘ ‘I\H

N

|
|

i
) I U\W\

Problem? Problem with FT
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FT contains only frequency information

w ’u r il m‘l No time information is retained
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Works fine for stationary signals

Non-stationary or changing signals cause problems

FT shows frequencies occurring at all times instead of
specific times

Ideas?
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Short-Time Fourier Transform
. (STFT)

Idea: Break up the signal into discrete windows
Treat each signal within a window as a stationary signal
Take FT over each part
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STFT Example

amplitude

time

frequency
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STFT Example
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Problem: Resolution

How do we pick the window size? Trade-offs?

We can vary time and frequency accuracy

Narrow window: good time resolution, poor
frequency resolution

Wide window: good frequency resolution, poor
time resolution
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Varying the resolution

T W e

Wavelets

Wave Wavelets ©
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Wavelets

Wavelets respond to signals that are similar
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Wavelet response

A wavelet responds to signals that are
similar to the wavelet
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Wavelet response
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Scale matters!
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Wavelet Transform
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Idea: Take a wavelet and vary scale

Check response of varying scales on signal
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Wavelet Example: Scale 1
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Wavelet Example: Scale 2
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Wavelet Example: Scale 3

Wavelet Example

Scale = 1/frequency

Translation = Time
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Discrete Wavelet Transform
(DWT)

Wavelets come in pairs (high pass and low pass filter)

Split signal with filter and downsample
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DWT cont.
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Continue this process on the low frequency
portion of the signal
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DWT Example

signal

low frequency

high frequency
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How did this solve the
resolution problem?

Higher frequency resolution at high frequencies
Higher time frequency at low frequencies

»
g
g
H
H
H
g
[

T e

Feature Extraction

All these transforms help us understand how the
frequencies changes over time

Features extraction:
Mel-frequency cepstral coefficients (MFCCs)
= Attempt to mimic human ear
Surface features (texture, timbre, instrumentation)
= Capture frequency statistics of STFT
Rhythm features (i.e the “beat”)
= Characteristics of low-frequency wavelets

rock, hip-hop,
classical or jazz?
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How well do you think we can do?

o Yo W e S 1
| CLASSICAL ROCK
; ; Music Classification
< |
' F13 : | | ®- D 9 ®-
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} | Data
S Y AT e : | Audio collected from radio, CDs and Web
° A S ° © "™ “ = Speech vs. music
’ = Genres: classic, country, hiphop, jazz, rock
JAZZ s HIP-HOP = 4-types of classical music
. 50 samples for each class, 30 sec. long
i H Task is to predict the genre of the clip
A £ |
| o
‘ | Approach
% o e S & Extract features
- ) Learn genre classifier
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Music Classification General Results
Data " -
Audio collected from radio, CDs and Web MSUS|C Vhs .| Genres Classical
= Speech vs. music peec
= Genres: classic, country, hiphop, jazz, rock o o o
= 4-types of classical music Random 50% 16% 25%
50 samples for each class, 30 sec. long
Task is to predict the genre of the clip Classifier 86% 62% 76%
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Results: Musical Genres
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Results: Classical

Choral | Orchestral Piano String
Choral 99 10 16 12
Orchestral 0 53 2 5
Piano 1 20 75 3
String 0 17 7 80

Classic | Country | Disco | Hiphop | Jazz | Rock
Classic 86 2 0 4 18 1
Country 1 57 5 1 12 | 13
Disco 0 6 55 4 0 5
Hiphop 0 15 28 90 4 | 18
Jazz 7 1 0 0 37 | 12
Rock 6 19 11 0 27 | 48

Pseudo-confusion matrix

Confusion matrix
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Thanks

Robi Polikar for his old tutorial
(

10/30/12

12



