
1

Web Crawlers and Link Analysis!

David Kauchak

cs458
Fall 2011

adapted from:
http://www.stanford.edu/class/cs276/handouts/lecture15-linkanalysis.ppt

http://webcourse.cs.technion.ac.il/236522/Spring2007/ho/WCFiles/Tutorial05.ppt

Administrative

n  Midterm

n  Timeline
n  HW 4 due Friday (can work in pairs)

n  Assignment 4 out soon: due Friday 11/9
n  Project proposal drafts: Thursday 11/8

n  Project discussion/coordination: in-class
Tuesday 11/13

n  This leaves three weeks for final projects

n  Lunch Thursday

Web crawlers

2

Web crawlers

Find pages on the web

How would you do it?

What are some of the challenges?

Basic crawler

Begin with “seed” URLs in the queue

n  Get a URL from the queue
n  Fetch the page

n  Parse the page and extract URLs it points to

n  Place the extracted URLs on a queue

Web crawlers

Crawling is similar at a high-level to traditional graph search

How is it different?

n  Latency/bandwidth issues (we have to actually fetch each
node)

n  Malicious pages
n  Spam

n  Spider traps

n  Politeness concerns – don’t hit the same server too
frequently

n  Duplicate pages

n  Web is not fully connected

Fetching web pages

Given a URL, we first need to fetch the actual web page

What steps need to happen?
n  Find the web server

n  similar to “call Dave Kauchak” – we need to know how to contact
the web server

n  Computers on the web are specified by IP addresses

n  DNS (domain name service) offers a directory lookup from domain
to IP address

n  DNS lookup is distributed and can be slow

www.cs.middlebury.edu/classes/cs458/index.html

domain name file location

3

Fetching web pages

Given a URL, we first need to fetch the actual web page

What steps need to happen?
n  Contact the web server and download the file

n  A web server is just a computer connected to the internet listening
on port 80 (or sometimes 8080) for HTTP requests

n  Connect to the server and request the particular page

www.cs.middlebury.edu/classes/cs458/index.html

domain name file location

> telnet www.cs.middlebury.edu 80

GET /index.html HTTP/1.1
Host: www.cs.middlebury.edu
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)

Parse web page and extract URLs

Challenges/issues?

Parse web page and extract URLs

Parsing the web page
n  Deal with many of the issues we talked about

previously, like encoding, etc.

n  Full HTML parsing can be a pain since web browsers
are fault tolerant

Many HTML variants

n  http://en.wikipedia.org/wiki/HTML
n  Javascript, flash, …

Parse web page and extract URLs

Extract URLs

n  Handle “relative” URLs, e.g. “administrivia.html”

n  Remove duplicate URLs

Besides extracting the URLs/links for crawling
purposes, is there anything else we need them for?

4

Connectivity Server
[CS1: Bhar98b, CS2 & 3: Rand01]

Support for fast queries on the web graph
n  Which URLs point to a given URL?

n  Which URLs does a given URL point to?

Stores the mappings in memory

Applications
n  Crawl control

n  Web graph analysis
n  Connectivity, crawl optimization

n  Link analysis

Polite web crawlers

A web crawler has few constraints on which pages it can
visit, but it must adhere to politeness policies

Never hit the same web server (generally IP) more frequently
than once a second

Only one connection open to a giver web server at a time

robots.txt

Robots.txt

Protocol for giving spiders (“robots”) limited access
to a website, originally from 1994

n  www.robotstxt.org/wc/norobots.html

Website announces its request on what can(not) be
crawled

n  For a domain, create a file Domain/robots.txt

n  This file specifies access restrictions

Robots.txt examples

5

Robots.txt example

What does this one say?

User-agent: *

Disallow: /yoursite/temp/

Allow: /yoursite/temp/bobs_burgers.html

User-agent: Google

Disallow:

Robots.txt example

No robot should visit any URL starting with
"/yoursite/temp/” except bobs_burger.html. The robot called
“Google” may visit any of the pages.

User-agent: *

Disallow: /yoursite/temp/

Allow: /yoursite/temp/bobs_burgers.html

User-agent: Google
Disallow:

not all crawlers
support Allow

They can get complicated: Google.com Basic crawl architecture

WWW

DNS

Parse

Content
seen?

Doc
FP’s

Dup
URL
elim

URL
set

URL Queue

URL
filter

robots
filters

Fetch

6

Web crawler scale

The biggest challenges for web crawlers is dealing with the
size of the web

How many web pages per second would we need to
download to obtain 1 billion web pages in a month?

n  30 d * 24 h * 60 m * 60 s = 2,592,000

n  1,000,000,000/2,592,000 = 385 pages/sec

Have to be multithreaded/multi-computer

Logistics become trickier

Web crawler scale issues

What complications does this create?
n  Can’t hit same web server

n  Often pages point to pages on the same server

n  Can’t just wait… need to keep servers busy

n  Cache robots.txt

n  Distributed computing
n  Duplicate URL detection

n  Keeping track of who’s doing what

n  Cache DNS lookup since it’s slow

The URL queue becomes an important data structure to
try and prioritize things appropriately

n  Can’t just do a priority queue!

URL frontier: Mercator scheme

Prioritizer

Biased front queue selector
Back queue router

Back queue selector

K front queues

B back queues
Single host on each

URLs

Crawl thread requesting URL

manages
URL priority

enforce
“politeness”

Priority

Prioritizer assigns to URL an integer priority
between 1 and K

n  Appends URL to corresponding queue

Heuristics for assigning priority?

n  Refresh rate sampled from previous crawls

n  Importance

n  Application-specific (e.g., “crawl news sites more
often”)

7

Web crawler The Web as a Directed Graph

A hyperlink between pages denotes author
perceived relevance AND importance

Page A
hyperlink Page B

How can we use this information?

Query-independent ordering

First generation: using link counts as simple measures of
popularity

Two basic suggestions:

n  Undirected popularity:
n  Each page gets a score = the number of in-links plus the number

of out-links (3+2=5)

n  Directed popularity:
n  Score of a page = number of its in-links (3)

problems?

What is pagerank?

The random surfer model

Imagine a user surfing the web
randomly using a web browser

The pagerank score of a page
is the probability that a
random surfing user will visit a
given page

http://images.clipartof.com/small/7872-Clipart-Picture-Of-A-World-Earth-
Globe-Mascot-Cartoon-Character-Surfing-On-A-Blue-And-Yellow-Surfboard.jpg

8

Random surfer model

We want to model the behavior of a “random” user
interfacing the web through a browser

Model is independent of content (i.e. just graph
structure)

What types of behavior should we model and how?
n  Where to start

n  Following links on a page

n  Typing in a url (bookmarks)

n  What happens if we get a page with no outlinks
n  Back button on browser

Random surfer model

Start at a random page

Go out of the current page along one of the links on that
page, equiprobably

1/3
1/3
1/3

Random surfer model

Start at a random page

Go out of the current page along one of the links on that
page, equiprobably

What about?

Random surfer model

“Teleporting”
n  If a page has no outlinks always jump

to random page

n  With some fixed probability, randomly jump to any other page,
otherwise follow links

9

Random surfer model

Start at a random page

If the page has no outlinks:

 randomly go to another page

otherwise:

 - probability α:

 randomly go to another page
 - probability 1-α,

 Go out of the current page along one of the
 links on that page, equiprobably

The questions…

Given a graph and a teleporting probability, we have some
probability of visiting every page

What is that probability of visiting for each page in the graph?

http://3.bp.blogspot.com/_ZaGO7GjCqAI/Rkyo5uCmBdI/
AAAAAAAACLo/zsHdSlKc-q4/s640/searchology-web-graph.png

Markov process

A markov process is defined by:
n  x1, x2, …, xn a set of states

n  An n by n transition matrix describing the probability
of transitioning to state xj given that you’re in state xi

x1

x2

xn

…

x1
… x2 xn

xij: p(xj|xi) rows must sum to 1

Anybody know why it’s called a markov process?

Given that a person’s last cola purchase was Coke, there is a
90% chance that their next cola purchase will also be Coke.

If a person’s last cola purchase was Pepsi, there is an 80%
chance that their next cola purchase will also be Pepsi.

coke pepsi

0.1 0.9 0.8

0.2

Markov Process
Coke vs. Pepsi Example

!

0.9 0.1
0.2 0.8
"

$

%

&
'

transition matrix:

pepsi

pepsi

coke

coke

State diagram?

10

Given that a person is currently a Pepsi purchaser,
what is the probability that he will purchase Coke
two purchases from now?

Markov Process
Coke vs. Pepsi Example (cont)

coke pepsi

0.1 0.9 0.8

0.2

!

0.9 0.1
0.2 0.8
"

$

%

&
'

transition matrix:

pepsi

pepsi

coke

coke

Given that a person is currently a Pepsi purchaser,
what is the probability that they will purchase Coke
two purchases from now?

Markov Process
Coke vs. Pepsi Example (cont)

⎥
⎦

⎤
⎢
⎣

⎡
=

8.02.0
1.09.0

P

pepsi coke Two scenarios:
-  Pepsi -> Coke
-  Coke -> Coke

Given that a person is currently a Pepsi purchaser,
what is the probability that they will purchase Coke
two purchases from now?

Markov Process
Coke vs. Pepsi Example (cont)

⎥
⎦

⎤
⎢
⎣

⎡
=

8.02.0
1.09.0

P

pepsi coke

Two scenarios:
-  Pepsi -> Coke
 0.8 * 0.2

-  Coke -> Coke
 0.2 * 0.9

Total: 0.34

Given that a person is currently a Pepsi purchaser,
what is the probability that they will purchase Coke
two purchases from now?

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

66.034.0
17.083.0

8.02.0
1.09.0

8.02.0
1.09.02P

Markov Process
Coke vs. Pepsi Example (cont)

Pepsi à ? ? à Coke

⎥
⎦

⎤
⎢
⎣

⎡
=

8.02.0
1.09.0

P

pepsi coke pepsi coke pepsi coke

pepsi

coke

11

Given that a person is currently a Coke purchaser,
what is the probability that he will purchase Pepsi
three purchases from now?

Markov Process
Coke vs. Pepsi Example (cont)

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

562.0438.0
219.0781.0

66.034.0
17.083.0

8.02.0
1.09.03P

pepsi coke pepsi coke pepsi coke

pepsi

coke

Steady state

In general, we can calculate the probability after n
purchases as Pn

We might also ask the question, what is the
probability of being in state coke or pepsi?

This is described by the steady state distribution
of a markov process

n  Note, this is a distribution over states not state
transitions

How might we obtain this?

Steady state
We have some initial vector describing the probabilities of each
starting state

For example, coke drinker: x = [1, 0]

We could have said a person that drinks coke 80% of the time, x
= [0.80, 0.20]

!

xP 3 = 1 0[]
0.781 0.219
0.438 0.562
"

$

%

&
' = 0.781 0.219[]

pepsi coke pepsi coke pepsi coke

!

xP 3 = .8 .2[]
0.781 0.219
0.438 0.562
"

$

%

&
' = 0.712 0.288[]

Steady state

Most common:
n  start with some initial x

n  xP, xP2, xP3, xP4, …

n  For many processes, this will eventually settle

12

45

Simulation:

Markov Process
Coke vs. Pepsi Example (cont)

week - i

Pr
[X

i =
 C

ok
e]

2/3

coke pepsi

0.1 0.9 0.8

0.2

Back to pagerank

Can we use this to solve our random surfer problem?
n  States are web pages
n  Transitions matrix is the probability of transitioning to page

A given at page B

n  “Teleport” operation makes sure that we can get to any page
from any other page

Matrix is much bigger, but same approach is taken…
n  P, P2, P3, P4, …

Pagerank summary

Preprocessing:
n  Given a graph of links, build matrix P

n  From it compute steady state of each state

n  An entry is a number between 0 and 1: the pagerank of
a page

Query processing:

n  Retrieve pages meeting query

n  Integrate pagerank score with other scoring (e.g. tf-idf)
n  Rank pages by this combined score

The reality

Pagerank is used in google, but so are
many other clever heuristics

13

Pagerank: Issues and Variants

How realistic is the random surfer model?
n  Modeling the back button

n  Surfer behavior sharply skewed towards short paths

n  Search engines, bookmarks & directories make jumps
non-random

Note that all of these just vary how we create our
initial transition probability matrix

Biased surfer models

Random teleport to any page is not very
reasonable

Biased Surfer Models
n  Weight edge traversal probabilities based on match

with topic/query (non-uniform edge selection)

n  Bias jumps to pages on topic (e.g., based on personal
bookmarks & categories of interest)

Topic Specific Pagerank

Conceptually, we use a random surfer who
teleports, with say 10% probability, using the
following rule:

n  Selects a category based on a query & user-specific
distribution over the categories

n  Teleport to a page uniformly at random within the
chosen category

What is the challenge?

Topic Specific Pagerank

Ideas?

Offline:Compute pageranks for individual
categories

n  Query independent as before
n  Each page has multiple pagerank scores – one for each

category, with teleportation only to that category

Online: Distribution of weights over categories
computed by query context classification

n  Generate a dynamic pagerank score for each page - weighted
sum of category-specific pageranks

14

Spamming pagerank Other link analysis

Pagerank is not the only link analysis method
n  Many, many improvements/variations of pagerank

n  Hubs and authorities

