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Web Crawlers and Link Analysis!

David Kauchak 

cs458 
Fall 2011 

adapted from: 
http://www.stanford.edu/class/cs276/handouts/lecture15-linkanalysis.ppt 

http://webcourse.cs.technion.ac.il/236522/Spring2007/ho/WCFiles/Tutorial05.ppt 

Administrative 

n  Midterm 

n  Timeline 
n  HW 4 due Friday (can work in pairs) 

n  Assignment 4 out soon: due Friday 11/9 
n  Project proposal drafts: Thursday 11/8 

n  Project discussion/coordination: in-class 
Tuesday 11/13 

n  This leaves three weeks for final projects 

n  Lunch Thursday 

Web crawlers 
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Web crawlers 

Find pages on the web 

 
How would you do it? 

 
What are some of the challenges? 

Basic crawler 

Begin with “seed” URLs in the queue 

n  Get a URL from the queue 
n  Fetch the page 

n  Parse the page and extract URLs it points to 

n  Place the extracted URLs on a queue 

Web crawlers 

Crawling is similar at a high-level to traditional graph search 

 
How is it different? 

n  Latency/bandwidth issues (we have to actually fetch each 
node) 

n  Malicious pages 
n  Spam 

n  Spider traps 

n  Politeness concerns – don’t hit the same server too 
frequently 

n  Duplicate pages 

n  Web is not fully connected 

Fetching web pages 

Given a URL, we first need to fetch the actual web page 

What steps need to happen? 
n  Find the web server 

n  similar to “call Dave Kauchak” – we need to know how to contact 
the web server 

n  Computers on the web are specified by IP addresses 

n  DNS (domain name service) offers a directory lookup from domain 
to IP address 

n  DNS lookup is distributed and can be slow 

www.cs.middlebury.edu/classes/cs458/index.html 

domain name file location 
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Fetching web pages 

Given a URL, we first need to fetch the actual web page 

What steps need to happen? 
n  Contact the web server and download the file 

n  A web server is just a computer connected to the internet listening 
on port 80 (or sometimes 8080) for HTTP requests 

n  Connect to the server and request the particular page 

www.cs.middlebury.edu/classes/cs458/index.html 

domain name file location 

> telnet www.cs.middlebury.edu 80 
 
GET /index.html HTTP/1.1 
Host: www.cs.middlebury.edu 
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1) 

Parse web page and extract URLs 

Challenges/issues? 

Parse web page and extract URLs 

Parsing the web page 
n  Deal with many of the issues we talked about 

previously, like encoding, etc. 

n  Full HTML parsing can be a pain since web browsers 
are fault tolerant 

 

Many HTML variants 

n  http://en.wikipedia.org/wiki/HTML 
n  Javascript, flash, … 

Parse web page and extract URLs 

Extract URLs 

n  Handle “relative” URLs, e.g. “administrivia.html” 

n  Remove duplicate URLs 

 
Besides extracting the URLs/links for crawling 
purposes, is there anything else we need them for? 
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Connectivity Server 
[CS1: Bhar98b, CS2 & 3: Rand01] 

Support for fast queries on the web graph 
n  Which URLs point to a given URL? 

n  Which URLs does a given URL point to? 

 
Stores the mappings in memory 

 

Applications 
n  Crawl control 

n  Web graph analysis 
n  Connectivity, crawl optimization 

n  Link analysis 

Polite web crawlers 

A web crawler has few constraints on which pages it can 
visit, but it must adhere to politeness policies 

 
Never hit the same web server (generally IP) more frequently 
than once a second 

 

Only one connection open to a giver web server at a time 

 

robots.txt 

Robots.txt 

Protocol for giving spiders (“robots”) limited access 
to a website, originally from 1994 

n  www.robotstxt.org/wc/norobots.html 

 
Website announces its request on what can(not) be 
crawled 

n  For a domain, create a file Domain/robots.txt 

n  This file specifies access restrictions 

Robots.txt examples 
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Robots.txt example 

What does this one say? 

User-agent: * 

Disallow: /yoursite/temp/ 

Allow: /yoursite/temp/bobs_burgers.html  

 
User-agent: Google 

Disallow:  

Robots.txt example 

No robot should visit any URL starting with  
"/yoursite/temp/” except bobs_burger.html. The robot called 
“Google” may visit any of the pages. 

User-agent: * 

Disallow: /yoursite/temp/ 

Allow: /yoursite/temp/bobs_burgers.html 

 

User-agent: Google 
Disallow:  

not all crawlers 
support Allow 

They can get complicated: Google.com Basic crawl architecture 

WWW 

DNS 

Parse 

Content 
seen? 

Doc 
FP’s 

Dup 
URL 
elim 

URL 
set 

URL Queue 

URL 
filter 

robots 
filters 

Fetch 
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Web crawler scale 

The biggest challenges for web crawlers is dealing with the 
size of the web 

 
How many web pages per second would we need to 
download to obtain 1 billion web pages in a month? 

n  30 d * 24 h * 60 m * 60 s = 2,592,000 

n  1,000,000,000/2,592,000 = 385 pages/sec 

Have to be multithreaded/multi-computer 

 
Logistics become trickier 

Web crawler scale issues 

What complications does this create? 
n  Can’t hit same web server 

n  Often pages point to pages on the same server 

n  Can’t just wait… need to keep servers busy 

n  Cache robots.txt 

n  Distributed computing 
n  Duplicate URL detection 

n  Keeping track of who’s doing what 

n  Cache DNS lookup since it’s slow 

 
The URL queue becomes an important data structure to 
try and prioritize things appropriately 

n  Can’t just do a priority queue! 

URL frontier: Mercator scheme 

Prioritizer 

Biased front queue selector 
Back queue router 

Back queue selector 

K front queues 

B back queues 
Single host on each 

URLs 

Crawl thread requesting URL 

manages 
URL priority 

enforce 
“politeness” 

Priority 

Prioritizer assigns to URL an integer priority 
between 1 and K 

n  Appends URL to corresponding queue 

 
Heuristics for assigning priority? 

n  Refresh rate sampled from previous crawls 

n  Importance 

n  Application-specific (e.g., “crawl news sites more 
often”) 
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Web crawler The Web as a Directed Graph 

A hyperlink between pages denotes author 
perceived relevance AND importance 

Page A 
hyperlink Page B 

How can we use this information? 

Query-independent ordering 

First generation: using link counts as simple measures of 
popularity 

 
Two basic suggestions: 

n  Undirected popularity: 
n  Each page gets a score = the number of in-links plus the number 

of out-links (3+2=5) 

n  Directed popularity: 
n  Score of a page = number of its in-links (3) 

problems? 

What is pagerank? 

The random surfer model 

Imagine a user surfing the web 
randomly using a web browser 

The pagerank score of a page 
is the probability that a 
random surfing user will visit a 
given page 

http://images.clipartof.com/small/7872-Clipart-Picture-Of-A-World-Earth-
Globe-Mascot-Cartoon-Character-Surfing-On-A-Blue-And-Yellow-Surfboard.jpg 
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Random surfer model 

We want to model the behavior of a “random” user 
interfacing the web through a browser 

 

Model is independent of content (i.e. just graph 
structure) 

 

What types of behavior should we model and how? 
n  Where to start 

n  Following links on a page 

n  Typing in a url (bookmarks) 

n  What happens if we get a page with no outlinks 
n  Back button on browser 

Random surfer model 

Start at a random page 

 
Go out of the current page along one of the links on that 
page, equiprobably 

 

 
 

1/3 
1/3 
1/3 

Random surfer model 

Start at a random page 

 
Go out of the current page along one of the links on that 
page, equiprobably 

What about? 

Random surfer model 

“Teleporting” 
n  If a page has no outlinks always jump 

to random page 

n  With some fixed probability, randomly jump to any other page, 
otherwise follow links 



9 

Random surfer model 

Start at a random page 

 
If the page has no outlinks: 

 randomly go to another page 

otherwise: 

 - probability α: 

  randomly go to another page 
 - probability 1-α,  

  Go out of the current page along one of the  
  links on that page, equiprobably 

 

 

 

The questions… 

Given a graph and a teleporting probability, we have some 
probability of visiting every page 

 

What is that probability of visiting for each page in the graph? 

http://3.bp.blogspot.com/_ZaGO7GjCqAI/Rkyo5uCmBdI/
AAAAAAAACLo/zsHdSlKc-q4/s640/searchology-web-graph.png 

Markov process 

A markov process is defined by: 
n  x1, x2, …, xn a set of states 

n  An n by n transition matrix describing the probability 
of transitioning to state xj given that you’re in state xi 

x1 

x2 

xn 

…
 

x1 
… x2 xn 

xij: p(xj|xi) rows must sum to 1 

Anybody know why it’s called a markov process? 

Given that a person’s last cola purchase was Coke, there is a 
90% chance that their next cola purchase will also be Coke. 

If a person’s last cola purchase was Pepsi, there is an 80% 
chance that their next cola purchase will also be Pepsi. 

coke pepsi 

0.1 0.9 0.8 

0.2 

Markov Process 
Coke vs. Pepsi Example 

! 

0.9 0.1
0.2 0.8
" 

# 
$ 

% 

& 
' 

transition matrix: 

pepsi 

pepsi 

coke 

coke 

State diagram? 
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Given that a person is currently a Pepsi purchaser, 
what is the probability that he will purchase Coke 
two purchases from now? 

Markov Process 
Coke vs. Pepsi Example (cont) 

coke pepsi 

0.1 0.9 0.8 

0.2 

! 

0.9 0.1
0.2 0.8
" 

# 
$ 

% 

& 
' 

transition matrix: 

pepsi 

pepsi 

coke 

coke 

Given that a person is currently a Pepsi purchaser, 
what is the probability that they will purchase Coke 
two purchases from now? 

Markov Process 
Coke vs. Pepsi Example (cont) 

⎥
⎦

⎤
⎢
⎣

⎡
=

8.02.0
1.09.0

P

pepsi coke Two scenarios: 
-  Pepsi -> Coke 
-  Coke -> Coke 

Given that a person is currently a Pepsi purchaser, 
what is the probability that they will purchase Coke 
two purchases from now? 

Markov Process 
Coke vs. Pepsi Example (cont) 

⎥
⎦

⎤
⎢
⎣

⎡
=

8.02.0
1.09.0

P

pepsi coke 

Two scenarios: 
-  Pepsi -> Coke 
   0.8 * 0.2 

-  Coke -> Coke 
    0.2 * 0.9 
 
Total: 0.34 

Given that a person is currently a Pepsi purchaser, 
what is the probability that they will purchase Coke 
two purchases from now? 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

66.034.0
17.083.0

8.02.0
1.09.0

8.02.0
1.09.02P

Markov Process 
Coke vs. Pepsi Example (cont) 

Pepsi à ? ? à Coke 

⎥
⎦

⎤
⎢
⎣

⎡
=

8.02.0
1.09.0

P

pepsi coke pepsi coke pepsi coke 

pepsi 

coke 
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Given that a person is currently a Coke purchaser, 
what is the probability that he will purchase Pepsi 
three purchases from now? 

Markov Process 
Coke vs. Pepsi Example (cont) 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

562.0438.0
219.0781.0

66.034.0
17.083.0

8.02.0
1.09.03P

pepsi coke pepsi coke pepsi coke 

pepsi 

coke 

Steady state 

In general, we can calculate the probability after n  
purchases as Pn 

 

We might also ask the question, what is the 
probability of being in state coke or pepsi? 

 

This is described by the steady state distribution 
of a markov process 

n  Note, this is a distribution over states not state 
transitions 

 
How might we obtain this? 

Steady state 
We have some initial vector describing the probabilities of each 
starting state 

For example, coke drinker: x = [1, 0] 

 

 

 

We could have said a person that drinks coke 80% of the time, x 
= [0.80, 0.20] 

! 

xP 3 = 1 0[ ]
0.781 0.219
0.438 0.562
" 

# 
$ 

% 

& 
' = 0.781 0.219[ ]

pepsi coke pepsi coke pepsi coke 

! 

xP 3 = .8 .2[ ]
0.781 0.219
0.438 0.562
" 

# 
$ 

% 

& 
' = 0.712 0.288[ ]

Steady state 

Most common: 
n  start with some initial x 

n  xP, xP2, xP3, xP4, … 

n  For many processes, this will eventually settle 
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45 

Simulation: 

Markov Process 
Coke vs. Pepsi Example (cont) 

week - i 

Pr
[X

i =
 C

ok
e]

 

2/3 

coke pepsi 

0.1 0.9 0.8 

0.2 

Back to pagerank 

Can we use this to solve our random surfer problem? 
n  States are web pages 
n  Transitions matrix is the probability of transitioning to page 

A given at page B 

n  “Teleport” operation makes sure that we can get to any page 
from any other page 

Matrix is much bigger, but same approach is taken… 
n  P, P2, P3, P4, … 

Pagerank summary 

Preprocessing: 
n  Given a graph of links, build matrix P 

n  From it compute steady state of each state 

n  An entry is a number between 0 and 1: the pagerank of 
a page 

 
Query processing: 

n  Retrieve pages meeting query 

n  Integrate pagerank score with other scoring (e.g. tf-idf) 
n  Rank pages by this combined score 

The reality 

Pagerank is used in google, but so are 
many other clever heuristics 
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Pagerank: Issues and Variants 

How realistic is the random surfer model? 
n  Modeling the back button 

n  Surfer behavior sharply skewed towards short paths 

n  Search engines, bookmarks & directories make jumps 
non-random 

 
Note that all of these just vary how we create our 
initial transition probability matrix 

Biased surfer models 

Random teleport to any page is not very 
reasonable 

 

Biased Surfer Models 
n  Weight edge traversal probabilities based on match 

with topic/query (non-uniform edge selection) 

n  Bias jumps to pages on topic (e.g., based on personal 
bookmarks & categories of interest) 

Topic Specific Pagerank 

Conceptually, we use a random surfer who 
teleports, with say 10% probability, using the 
following rule: 

n  Selects a category based on a query & user-specific 
distribution over the categories 

n  Teleport to a page uniformly at random within the 
chosen category 

 

What is the challenge? 

Topic Specific Pagerank 

Ideas? 
 
Offline:Compute pageranks for individual 
categories 

n  Query independent as before 
n  Each page has multiple pagerank scores – one for each 

category, with teleportation only to that category 

 
Online: Distribution of weights over categories 
computed by query context classification 

n  Generate a dynamic pagerank score for each page - weighted 
sum of category-specific pageranks 
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Spamming pagerank Other link analysis  

Pagerank is not the only link analysis method 
n  Many, many improvements/variations of pagerank 

n  Hubs and authorities 


