
CS458 - Assignment 2

Due: Friday October 5 at 6pm

Fiction Rule of Thumb
(not quite as important as Zipf’s or Heaps’ laws)

http://xkcd.com/483/

For the next step in our IR system we’re going to be adding functionality to do boolean queries.
For our purposes a boolean query is defined as a boolean expression. An expression can be any of:

- a term (i.e. any non-whitspace character sequence). For example:
test

calpurnia

the

- a negated term: any term preceeded by a !. For example:
!term

!calpurnia

!the

- <expression> AND <expression>. For example:
brutus AND calpurnia

brutus AND calpurnia AND !caeser

- <expression> OR <expression>. For example:
brutus AND calpurnia OR caeser

!caeser OR brutus AND banana

1



Any multiterm query MUST be connected with either an AND or an OR, so “middlebury college”
is not a valid query, but could be expressed as “pomona AND college”.

We will be building on top of the code that we used last time. For simplicity, I’m asking that you
all start from the same base code that I’ve provided at:

/home/dkauchak/PUBLIC/cs458/assign2

This will greatly simplify the headaches on your side and the grading on my side. You should be
able to swap out your code at some later point for the code I’m providing you. If you forgot how
to import the code into Eclipse, see the write-up for assignment 1.

Before starting this assignment read through the entire document. Although I’ve given you some
freedom, for certain aspects I have been explicit about how you should implement them. At the
end I’ve included some helpful hints and tools that may be useful. If there is any ambiguity or
question about what you are being asked to do, ask the me to clarify.

For this assignment, I’m giving you a bit more flexibility about how you develop the code. In the
skeleton code, I’ve provided a few classes that you’ll need to fill in. Details about those classes are
below. I’ve also provided a BooleanSearch class that will allow you to run queries against your
system once it’s built.

Data

Your implementation will be expected to run reasonably efficiently on the entire TDT corpus that
we used for the first assignment. For testing purposes, I strongly suggest that you create your own
very simple corpus file. You may also use the sample data set from the first assignment, though
even this may be too complex for identifying bugs.

What to implement

Below are descriptions of the classes you must implement. In each case, I have included a skeleton
of the class in the code I provided you and have defined which public methods you must define.
Do not change this public interface.

1. Posting list representation: PostingsList.java

Each term in our dictionary will have an associated postings list which stores the document
IDs for all the documents that word occurs in in sorted order. The PostingsList class will
store these. You will have one PostingsList object for each dictionary entry.

Your implementation must use a singly linked list to store the docIDs. You will have to
implement this yourselves, but this should be a review from data structures :) I’m asking you
to do this rather than use the built-in linked list both as an exercise, but more importantly,
this will make our life much easier when performing merges.

2



Besides storing the data, the PostingsList class also provides functionality to andMerge

(AND), orMerge (OR) and not (!) postings lists. Make sure that the postings lists you return
from these operations are valid postings lists, that is, they contain unique docIDs that are in
sorted order.

2. Index generation and query processing: Index.java

The Index class will build our inverted index, store the actual index and provides an interface
to query the index.

Recall that the index provides a mapping from terms to postings lists, i.e. the dictionary. For
now, you may use a hashtable (i.e. HashMap) to store this mapping, though as we mentioned
in class there are downsides to this approach.

index construction

To construct a new index, you create a new Index object and pass along a DocumentReader

(e.g. the TDTReader class is a DocumentReader). You must use sort-based index construction
to build your index, where you collect term/docID pairs, sort them, then make a final pass
to generate the index/postings lists.

query processing

Given a text query, you should return a postings list with docIDs corresponding to the answer
to the query (which may be an empty set). Query processing has two stages. First, you must
process the query and figure out what it’s trying to say. For our assignment, we will not be
doing any token processing/normalization on the query and will query whatever terms the
user provides. You may do this processing however you like, but one approach is to make
a new class that represents the possible query term entries (i.e. a term, a negated term, an
AND and an OR).

Once you’ve parsed the query, the second step is to generate the result set. For this as-
signment, we won’t worry about query processing ordering, so you may process the query
in whatever order you like. I suggest starting at the end of the query and moving your way
forward in term pairs. Use the methods you wrote for PostingsList (e.g. andMerge) to
accomplish this task.

Hints/Comment

• You’re code should be fairly efficient and the running times should be on the order of those
discussed in class. For the entire corpus, it should only take a few minutes to tokenize and
build the index. Once the index is built, queries should be answered almost immediately (I
timed my implementation and they’re on the order of a 5 ms).

• You may test this on whatever data you like, but I’d suggest first creating a very simple corpus
(for example, with a vocabulary of just a few words and containing just a few documents).

3



Once you’ve got this working you can try things out on the sample corpus and then when
you feel like it’s working, try it on the entire TDT corpus.

• Some of these things can be tricky to get right. The best way to debug is to test each part
individually. Once you’re sure one method/class is working then you can test the larger
system.

• Watch the corner cases! It’s very easy to leave off the last item on a postings list or similar
such issues. Think about these situations and make sure to test for them.

• You can change your code to just handle single term queries or queries with a single AND
(or OR), which again can be useful for checking functionality one piece at a time.

• Look at the java.util.Comparable interface when you’re thinking about sorting

• If you break up the sample file into 5 individual files named 0 through 4, then you can check
your answers using grep.

• It’s likely you’ll run into memory issues and may have to increase your memory beyond 512M.
If you find things are running slow you can use “top” or a similar program to see what your
memory footprint is and then increase the VM arguments as in the first assignment.

• I added a toString() method to the Document class that prints out documents in a nice
format.

What to turn in and how to turn it in

• What to turn in:

– A “jar” file of your code, which should contain all classes required to get your code
working, including the original files I provided, the two new classes noted above as well
as any supporting classes you need. See the assignment 1 writeup for details on creating
a jar file.

– A text file with the following information:

1. Name(s)

2. What was the most challenging part of this assignment?

3. How long did it take you?

4. When did you start?

5. We used a hashtable for implementing the mapping from terms to postings list.
Using lowercasing, how many empty entries are there in the hashtable after you
read in the index? Roughly how much wasted memory does this correspond to?

• Make a directory with your last names and the assignment number (e.g. kauchak scharstein2).
Put your jar file in this directory and put your text file in the directory.

• tar and gzip the directory. For example:

4



tar -cvf kauchak_scharstein2.tar kauchak_scharstein2

then

gzip kauchak_scharstein2.tar

• Submit the tar, gz file online (e.g. kauchak scharstein2.tar.gz).

5


