
CS150 - Assignment 7

Hangman

Due: Wednesday October 31 (Happy Halloween!)

at the beginning of class

For this lab, you will be implementing a text-based version of hangman. There are many variants
of the program, so make sure to follow the specifications closely. You can also play a demo version
of the program you will be implementing. See the lab prep for details on how to do this.

Make sure you read through this whole handout first before getting started. I’ve given an overview
of how to proceed and some hints near the end.

If you want, you may work with a partner on this lab. If you do, you must both be there whenever
you’re working on the lab. Only one of you needs to submit the assignment, but make sure both
your names on in the comments.

1

1 Playing the game

When the program starts it reads a file containing a list of possible words. I’ve placed a text file
with CS words at:

http://www.cs.middlebury.edu/~dkauchak/classes/cs150/assignments/assign7/

(Right click on the file and select “Save link as...” to download. Remember, this file needs to be
in the same directory as your program.)

After reading the file, the program randomly selects one of these words as the word that the user
is trying to guess and then displays the following:

Guessed letters:

Incorrect guesses left: *******

Word: _______

This display has three main components:

1. Guessed letters: Shows the letters the player has guessed so far. The letters will be
separated by a space and should be all capitalized. When the game starts, no letters have
been guessed, so this area is blank.

2. Incorrect guesses left: Shows the remaining number of wrong/incorrect guesses the
player has before the game is over. Each remaining guess is represented as an ‘*’. In this
version of the game, the player starts out with 7 incorrect guesses.

3. Word: This shows the word that the player is trying to guess. Each underscore () represents
a letter in the word. The word above is 7 letters long. As the user plays, the correctly guessed
letters will be filled in.

The program runs, by continually prompting the user for the next letter. When the user enters a
letter, there are three possible cases:

• If the letter has been previously guessed, then the program lets the user know with a message
like “Letter already guessed!” and prompts the user for another letter.

• If the letter has not been guessed before, but does not occur in the word to be guessed, then
the number of incorrect guesses available is decremented by one and then the display is shown
again, prompting the user for another letter.

• If the letter has not been guessed before and does occur in the word, then the underscored
word is updated, with all occurrences of that letter in the appropriate place.

The following transcript shows all three of these different situations happening as the game is being
played:

2

Guessed letters:

Incorrect guesses left: *******

Word: ____

Guess a letter: e

Guessed letters: E

Incorrect guesses left: *******

Word: _e__

Guess a letter: a

Guessed letters: A E

Incorrect guesses left: *******

Word: _ea_

Guess a letter: r

Guessed letters: A R E

Incorrect guesses left: ******

Word: _ea_

Guess a letter: s

Guessed letters: A S R E

Incorrect guesses left: *****

Word: _ea_

Guess a letter: a

Letter already guessed!

Guess a letter: s

Letter already guessed!

Guess a letter: t

Guessed letters: A S R E T

Incorrect guesses left: ****

Word: _ea_

Guess a letter:

The game ends when either the user runs out of guesses, in which case the word is shown:

The word was: heap

Better luck next time!

3

or if the user fills in all of the underscores in the word, then the user wins and the number of
incorrect guesses is printed out:

Guessed letters: A H S R E

Incorrect guesses left: *****

Word: hea_

Guess a letter: p

You win!

The word was: heap

You guessed it with 2 incorrect guesses

2 Implementation requirements

http://www.cravingtech.com/best-cyanide-and-happiness-comic-strips.html

Besides following the game specification described above, your program MUST meet the following
requirements:

• Your program must contain at least the following four functions:

4

– read words: which takes a filename with words in it (one per line) as a parameter and
returns a list of the words in the file.

– set to string: which takes a set as a parameter and returns the letters in the set as a
string, with each letter capitalized and separated by a space.

– insert letter: which takes three parameters: a letter, the current underscored word
and the word the user is trying to guess. This function should return a new version
of the underscored letter with all occurrences of the letter filled in based on the letters
occurrence in the word to be guessed. For example:

>>> insert_letter("a", "__n_n_", "banana")

’_anana’

Note that I’ve represented the underscored word and the word to be guessed as a string,
but you may have some other representation, which is fine.

– play hangman: which takes two parameters, the filename that contains the candidate
words and the number of incorrect guesses the player gets. This function should then
initiate the hangman game and continue to run until the game finishes.

• Your program should properly use the above four functions.

• You must use a set to store the guessed letters.

• Your program should immediately start playing the game with a default of 7 incorrect guesses
when it is run.

• Your program should be able to handle upper-case or lower-case letters as input.

• The guessed letters shows should all be capitalized.

3 One path to implementation

There are many different ways to implement your program, but here is one suggestion:

• Write the read words function and make sure that it correctly reads in the words in the file
to a list. Don’t forget to remove the end of line when reading in words.

• Write the set to string function. This should be very similar to the function you wrote for
lab prep. Hint: sets are iterable. Test to make sure it works properly.

• Write the insert letter function. There are many ways to write this function, but one way
is to built up the new string from scratch in a similar way we did for the encryption functions.
For each letter in the new underscored word you’re creating, you will either just be copying
over what was in the underscores word before or, if that position corresponds to the letter
you’re looking for in the word to be guessed, you’ll be using the correct letter. This isn’t a
lot of code, but think about how you can write this.

5

• Write play hangman incrementally, testing each step before moving on to the next:

– Start by having it read in the file, pick a random word and then display the underscored
word. Note, when you’re developing, feel free to print out other information (like the
word you’re supposed to be guessing) to help you debug your program. Just make sure
to remove this information before you hand it in.

– Add the user input and add the letter that the user guessed into the underscored word
appropriately (your functions from above should be useful).

– Add in functionality to keep track of the letters the user has guessed and to print out
the letters guessed.

– Add the functionality to make sure that the user continues to be prompted to enter a
new letter as long as the letter input has already been guessed.

– End the game when the user gets the right answer.

– Keep track of the number of incorrect guesses and also end the game when the user runs
out of guesses.

– Print out the appropriate win/lose information depending on whether the user won or
lost.

Hints: Here are some things to think about:

• How do the four functions fit into the program? Each of them should play a role in your
program and will make your life easier and the program simpler.

• What information does your program need to keep track of (e.g. letters guessed, word to
be guessed, underscored word, etc.)? Make sure you think about how you’re storing each of
these pieces of information.

• If you’re confused about the behavior of your program, put in more print statements to print
out variables, etc.

• Remember, if your program hangs when you run it, you probably have an infinite loop. If
your run Wing in debug mode (two icons over from the green run arrow), you will see more
information and it will often help you figure out where the infinite loop is.

• This program should not be a lot of code, but some of it can be tricky. Make sure you think
about how you want to accomplish each step. Sometimes it helps to write down what you
want to do in English (i.e. pseudocode), focusing on the logic, and then translate this into
code.

4 Extra credit

As always, you may add any additions to the program for extra credit as long as it doesn’t make
the program easier. Make sure to put in comments at the top of the file indicating any extra credit
that you implement. Here are some ideas that you might consider:

6

• Currently, we don’t do any error checking to make sure that the user is entering valid entries,
in particular a single character or a character a-z. Add these additional checks and reprompt
the user to enter another character when this happens.

• Rather than using asterisks (‘*’) to represent how many guesses the person has left, add an
ASCII generated stick figure based on how many they have left. You’ll have to play with it
but something like:

|-----|

| O

| \|/

| |

| / \

is a good place to start (I’m sure you can do better, though :). In the real game, each time
you get it wrong, you add a body part.

5 When you’re done

Make sure that your program is properly commented:

• You should have comments at the very beginning of the file stating your name, course (in-
cluding section number), assignment number and the date.

• Each function should have an appropriate docstring

• Other miscellaneous comments to make things clear

In addition, make sure that you’ve used good style .

Submission procedure

Submit your .py file online using the digital submission link on the course web page. You must
have submitted it online before the beginning of class on Wed.

7

Grading

points

all words are read from the file 1
each time a random word is picked from the file 1
initial underscored word shown correctly 1
each guess is inserted appropriately in underscored word 3
guessed letters correctly displayed 2
guess letters are updated appropriately 1
guess letters uses a set 2
repeated requests from user on repeated letter 3
incorrect guesses updated appropriately 2
game ends correctly on win 2
game ends correctly on lose 2
handles lower and uppercase letters 1
program starts automatically on run 1
followed function specifications 3

Comments, style 5

extra credit 2

total 30 (+2)

http://xkcd.com/804/
(All the other hangman comics seemed a bit too morbid...)

8

