CS150 - Assignment 10
“To understand recursion, you must understand recursion”
Due: Wednesday Nov. 21, when class would normally begin

£ g
IT WAS THEORETICALLY |3 %@J@éﬁfﬂ%yggﬁ% £| MAYBE
IMPOSSIBLE TO WORK 3| Yyou
THIS LJEEK. E DO SOMETHING ELSE il couLd
Z| FIRST, UNTIL ITALL S| MAKE A
£| LOOPED BACK ON ITSELF |£| To-DO F;ﬁ‘é“ AI
LIKE A MOBIUS STRIP, |E| LIsT. il
E = E
Q
: \ NN,)
s g 2
; g /0L

http://dilbert.com/strips/comic/2007-12-14/

For this assignment, we will be playing with recursion. When you’re done, make sure you’ve met
all of the specifications required and that you're submitting everything you need to be (two .py
files and one .png file).

1 Warming up: lists

Having now discovered recursion, you’ve decided to become a recursion purist and not use any
functions that use iteration/loops. To get you started, you're going to implement some of the list
functions recursively. In a file called "warmup.py", write the following functions using recursion:

e A function called length that takes a list as a parameter and returns the length of the list.
Your function may not use the len function (Hint: to see if a list has a length of 0, check to
see if it equals [1)

e A function called rec_max that takes a list as a parameter and returns the largest value in
the list. You may assume that the list has at least one entry in it (and, of course, you may
not use the max function).

I’ve tried to make it clear above what functions are off limits, but please try not to utilize extraneous
functions that get around the heart of the problem. If there is any question about what is acceptable,
feel free to ask me.

Just for fun

If you want some more practice (not required), you can also try this one:

e A function called rec_count that takes a list and another object as a parameter. The function
returns how many times the object occurs in the list (you may not use the count, in or find
functions).

2 BigH

In another file called “recursive _pictures.py”’, write a function called recursive H that takes
four parameters: the x and y coordinates of the center of the H, the length of the vertical bars (the
horizontal bar will be 2 times the length) and number of recursive levels to draw. Level 1 should
just draw an H, level 2 an H with 4 smaller H’s at the end of the vertical bars, etc. The smallest
H’s will all have black dots at the end of their vertical bars. The following is a level 3 recursive H:

Ii

T T
AL L
N
T
L)L
T
A

Ii
Ii
Ii

See the lab prep for more details.
Advice:

- Walk through the four steps for defining a recursive function we discussed in class. When
doing this for graphical components, the key is often trying to finish a statement like: “A
recursive H is ...” | where somewhere after “is” you should end up using the term “recursive
H”. For example, a broccoli is a line with three smaller broccolis off of the end of this line.
Once you have this, think about what the base case would be.

- It can sometimes help to mentally walk through your recursive steps and draw out the figure
by hand.

- As always, think about how you might break off some of the functionality of this function
into other functions to make your code easier to debug and read.

1 DON'T KNOW

WHY FEOFLE DO
NOT LIKE MEI!

http://nrrdgrrl.net /nonsense/category /smellanie/page/2/

3 Stairs

For the last part of this lab add functionality to your “recursive_pictures.py” so that when you
run the program/module (but not when you import it) it generates the following picture:

Stairs with 63 squares

To do this, you must implement a function called stairs that takes three parameters: the x and
y coordinates of the bottom left corner of the stairs and the length of the side of the square in the
bottom left hand corner. You should recursively draw stairs as long as the side length is greater
than 3. The squares will be colored such that they get darker for smaller squares (not grey). Besides
drawing the stairs, the function should also return the number of squares inside the stairs and must
be calculated recursively (like we did with counting the lines for broccoli).

Powers of 2 work well for starting lengths. See the lab prep for more details on how the stairs can
be viewed recursively.

Implementation:

- Walk through the four steps for defining a recursive function outlined in class. Try and finish
the following statement recursively “Stairs are ...”.

- Get your stairs function working drawing just the outline.

- Add functionality to change the color of the squares based on the length of the side of the
square.

- Change your stairs function so that it returns the number of squares that make up the
stairs.

- Write some code so that it generates the stairs when the program runs (I used a starting
length of 128).

- Add the text underneath your picture stating the number of squares. Read the documentation
in the turtle module (or use help) regarding the write function to help you with this. You
must use the answer returned by your stairs function in your text (that is, don’t hard-code
63 in your call to write).

When you’re done, create a screen capture of the output of running your program and submit this
file along with your .py files (see Lab 2 for instructions on how to do a screen capture if you've
forgotten).

YOUR PARTY ENTERS THE TAVERN.

T GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET QUT SOME PARCHMENT
FOR CHARACTER SHEETS.

HEY, NO RECURSING.

http://xked.com/244/

4 Extra credit

You may earn up to 2 points of extra credit on this assignment. Below are some ideas, but you
may incorporate your own if you’d like. Make sure to document your extra credit additions in

comments at the top of the file.

e Add some color to the recursive H

e Make the color more interesting for the stairs, for example, have it change based on whether
it’s the top or the right recursive staircase.

e Add another recursive function that draws a different recursive structure (for example out of

circles or triangles).

5 When you’re done
Make sure that your program is properly commented:

e You should have a docstring comment for each module at the top of the file

e You should have comments after the module doc string stating your name, course (including
section number), assignment number and the date.

e Each function should have an appropriate docstring

e Other miscellaneous comments to make things clear

In addition, make sure that you’ve used good style

Submission procedure

For this assignment, you will have two .py files and an image file to submit. To submit multiple
files, create a directory with your name followed by the lab number. For example, my folder would
be called davidkauchak10.

Put all the files inside this directory and the create a .zip file from this directory. On the Macs,
right-click on the directory and select “Compress...”. If you're working on Windows, right-click on
the file and select “Send to” then select “Compressed (zipped) Folder” (or if you don’t have this
option, use http://www.winzip.com/). You will then see a file with a .zip extension be created.

Submit this .zip file digitally at the usual location:
http://www.cs.middlebury.edu/~dkauchak/classes/cs150 /submission/

Enter the relevant information and upload your file. If you have problems with this, please let me
know. This link can also be found in the “Resources” section of the course web page at the bottom.

Grading
points
warmup.py
length 3
rec_max 3
recursive_pictures.py
recursive H 4
recursive stairs 4
returns num squares 2
stairs coloring 2
text/generates picture on run 2
Comments, style 5
extra credit 2
[total [25 (+2) |

