

Admin

Assignment 2

Morphology

- What is morphology?
 study of the internal structure of words
 morph-ology word-s jump-ing
- Why might this be useful for NLP?
 - generalization (runs, running, runner are related)
 - additional information (it's plural, past tense, etc)
 - allows us to handle words we've never seen before
 smoothing?

New words

- AP newswire stories from Feb 1988 Dec 30, 1988
 300K unique words
- □ New words seen on Dec 31
 - compounds: prenatal-care, publicly-funded, channelswitching, ...
 - New words:
 - dumbbells, groveled, fuzzier, oxidized, ex-presidency, puppetry, boulderlike, over-emphasized, antiprejudice

Morphology basics

- Words are built up from morphemes
 stems (base/main part of the word)
 - □ affixes
 - prefixes
 - precedes the stem
 - suffixes
 - follows the stem
 - infixes
 - inserted inside the stem
 - circumfixes
 surrounds the stem
 - Examples?

Morpheme examples

- prefix
 - circum- (circumnavigate)
- 🗖 dis- (dislike)
- mis- (misunderstood)
- 🗖 com-, de-, dis-, in-, re-, post-, trans-, ...
- $\hfill\square$ suffix
 - -able (movable)
 - -ance (resistance)
 - -ly (quickly)
- -tion, -ness, -ate, -ful, ...

Morpheme examples

🗆 infix

- -fucking- (cinder-fucking-rella)
- more common in other languages
- \Box circumfix
 - doesn't really happen in English
 - 🗖 a- -ing
 - a-running
 - a-jumping

Agglutinative: Finnish

talo 'the-house' talo-ni 'my house' talo-ssa 'in the-house' talo-ssa-ni 'in my house' talo-i-ssa 'in the-houses' talo-i-ssa-ni 'in my houses' kaup-pa 'the-shop' kaup-pa-ni 'my shop' kaup-a-ssa 'in the-shop' kaup-a-ssa-ni 'in my shop' kaup-o-i-ssa 'in the-shops' kaup-o-i-ssa-ni 'in my shops'

Stemming (baby lemmatization)					
Reduce a word to the main morpheme					
automate automates automatic automation		automat			
run runs running		run			

- □ ies \rightarrow i
- \Box ational \rightarrow ate
- \Box tional \rightarrow tion
- http://tartarus.org/~martin/PorterStemmer/

What is Syntax?

- □ Study of structure of language
- Examine the rules of how words interact and go together
- Rules governing grammaticality
- □ I will give you one perspective
 - no single correct theory of syntax
 - \hfill an active field of research in linguistics
 - we will often use it as a tool/stepping stone for other applications

Structure in language

The man flew all the way home.

- Language is bound by a set of rules
- It's not clear exactly the form of these rules, however, people can generally recognize them
- This is syntax!

Syntax != Semantics

Colorless green ideas sleep furiously.

Syntax is only concerned with how words interact from a grammatical standpoint, not semantically

Parts of speech

What are parts of speech (think 3rd grade)?

Parts of speech					
Parts of speech are constructed by grouping words that function similarly: - with respect to the words that can occur nearby - and by their morphological properties The manall the way home.					
		ran forgave	integrated programmed	washed warned	
		ate	shot	walked	
		drove drank	shouted sat	spoke succeeded	
		hid	slept	survived	
		learned	understood	read	
		hurt	voted	recorded	

Parts of speech

What are the English parts of speech?

8 parts of speech?

- Noun (person, place or thing)
- Verb (actions and processes)
- Adjective (modify nouns)
- Adverb (modify verbs)
- Preposition (on, in, by, to, with)
- Determiners (a, an, the, what, which, that)
- Conjunctions (and, but, or)
- Particle (off, up)

English parts of speech

- □ Brown corpus: 87 POS tags
- Penn Treebank: ~45 POS tags Derived from the Brown tagset
 - Most common in NLP
 - Many of the examples we'll show us this one
- British National Corpus (C5 tagset): 61 tags
- C6 tagset: 148
- C7 tagset: 146
- C8 tagset: 171

Brown tagset

http://www.comp.leeds.ac.uk/ccalas/tagsets/brown.html

- To (TO): to (to eat)

English Parts of Speech (cont.)

- Adjective (modify nouns)
 Basic (JJ): red, tall
 Comparative (JJR): redder, taller
 Superlative (JJS): reddest, tallest
- Adverb (modify verbs)
 Basic (RB): quickly
 - Comparative (RBR): quicker
 Superlative (RBS): quickest
- Preposition (IN): on, in, by, to, with

Determiner: Basic (DT) a, an, the WH-determiner (WDT): which, that

- Coordinating Conjunction (CC): and, but, or,
- Particle (RP): off (took off), up (put up)

Closed vs. Open Class

- Closed class categories are composed of a small, fixed set of grammatical function words for a given language.
 - Pronouns, Prepositions, Modals, Determiners, Particles, Conjunctions
- Open class categories have large number of words and new ones are easily invented.
 - Nouns (Googler, futon, iPad), Verbs (Google, futoning), Adjectives (geeky), Abverb (chompingly)

Part of speech tagging

- □ Annotate each word in a sentence with a part-ofspeech marker
- Lowest level of syntactic analysis

John saw the saw and decided to take it to the table. NNP VBD DT NN CC VBD TO VB PRP IN DT NN

Ambiguity in POS Tagging

I like candy.

VBP (verb, non-3rd person, singular, present)

Time flies like an arrow.

IN (preposition)

Does "like" play the same role (POS) in these sentences?

Ambiguity in POS tagging

- Like most language components, the challenge with POS tagging is ambiguity
- Brown corpus analysis
 - 11.5% of word types are ambiguous (this sounds promising)
 - 40% of word appearance are ambiguous
 - Unfortunately, the ambiguous words tend to be the more frequently used words

How hard is it?

- If I told you I had a POS tagger that achieved 90% would you be impressed?
 - Shouldn't be... just picking the most frequent POS for a word gets you this
- What about a POS tagger that achieves 93.7%?
 Still probably shouldn't be... only need to add a basic module for handling unknown words
- What about a POS tagger that achieves 100%?
 Should be suspicious... humans only achieve ~97%
 Probably overfitting

POS Tagging Approaches

- Rule-Based: Human crafted rules based on lexical and other linguistic knowledge
- Learning-Based: Trained on human annotated corpora like the Penn Treebank
 - Statistical models: Hidden Markov Model (HMM), Maximum Entropy Markov Model (MEMM), Conditional Random Field (CRF), log-linear models, support vector machines
 - Rule learning: Transformation Based Learning (TBL)
- $\hfill\square$ The book discusses some of the more common approaches
- Many publicly available:
 - http://nlp.stanford.edu/links/statnlp.html (list 15 different ones mostly publicly available!)
 - http://www.coli.uni-saarland.de/~thorsten/tnt/