
9/27/11	

1	

Language acquisition

¨  http://www.youtube.com/watch?v=RE4ce4mexrU

LANGUAGE MODELING:
SMOOTHING
David Kauchak
CS457 – Fall 2011

some slides adapted from
Jason Eisner

Admin

¨  Assignment 2 out
¤  bigram language modeling
¤  Java
¤ Can work with partners

n  Anyone looking for a partner?
¤ Due Wednesday 10/5
¤  Style/commenting (JavaDoc)
¤  Some advice

n  Start now!
n  Spend 1-2 hours working out an example by hand (you can check

your answers with me)
n  HashMap

Admin

¨  Our first quiz next Tuesday (10/4)
¤  In-class (~30 min.)
¤ Topics

n  corpus analysis
n  regular expressions
n probability
n  language modeling

¤ Open book
n we’ll try it out for this one
n better to assume closed book (30 minutes goes by fast!)

¤ 7.5% of your grade

9/27/11	

2	

Today

smoothing
techniques

Today

¨  Take home ideas:
¤ Key idea of smoothing is to redistribute the probability

to handle less seen (or never seen) events
n Still must always maintain a true probability distribution

¤ Lots of ways of smoothing data
¤ Should take into account features in your data!

Smoothing

P(I think today is a good day to be me) =

P(I | <start> <start>) x

P(think | <start> I) x

P(today| I think) x

P(is| think today) x

P(a| today is) x

P(good| is a) x

…

If any of these has never been
seen before, prob = 0!

What if our test set contains the following sentence, but one of the
trigrams never occurred in our training data?

Smoothing

P(I think today is a good day to be me) =

P(I | <start> <start>) x

P(think | <start> I) x

P(today| I think) x

P(is| think today) x

P(a| today is) x

P(good| is a) x

…

These probability estimates
may be inaccurate.
Smoothing can help reduce
some of the noise.

9/27/11	

3	

Add-lambda smoothing

¨  A large dictionary makes novel events too probable.
¨  add λ = 0.01 to all counts

see the abacus 1 1/3 1.01 1.01/203
see the abbot 0 0/3 0.01 0.01/203

see the abduct 0 0/3 0.01 0.01/203
see the above 2 2/3 2.01 2.01/203
see the Abram 0 0/3 0.01 0.01/203

… 0.01 0.01/203
see the zygote 0 0/3 0.01 0.01/203

Total 3 3/3 203

Vocabulary

¨  n-gram language modeling assumes we have a fixed
vocabulary
¤ why?

¨  Whether implicit or explicit, an n-gram language model
is defined over a finite, fixed vocabulary

¨  What happens when we encounter a word not in our
vocabulary (Out Of Vocabulary)?
¤  If we don’t do anything, prob = 0
¤  Smoothing doesn’t really help us with this!

Vocabulary

¨  To make this explicit, smoothing helps us with…

see the abacus 1 1.01
see the abbot 0 0.01

see the abduct 0 0.01
see the above 2 2.01
see the Abram 0 0.01

… 0.01
see the zygote 0 0.01

all entries in our vocabulary

Vocabulary

¨  and…
Vocabulary

a
able
about
account
acid
across
…
young
zebra

10
1
2
0
0
3
…
1
0

Counts

10.01
1.01
2.01
0.01
0.01
3.01
…
1.01
0.01

Smoothed counts

How can we have words in our
vocabulary we’ve never seen before?

9/27/11	

4	

Vocabulary

¨  Choosing a vocabulary: ideas?
¤ Grab a list of English words from somewhere
¤ Use all of the words in your training data
¤ Use some of the words in your training data

n  for example, all those the occur more than k times

¨  Benefits/drawbacks?
¤  Ideally your vocabulary should represents words you’re

likely to see
¤  Too many words: end up washing out your probability

estimates (and getting poor estimates)
¤  Too few: lots of out of vocabulary

Vocabulary

¨  No matter your chosen vocabulary, you’re still going
to have out of vocabulary (OOV)

¨  How can we deal with this?
¤  Ignore words we’ve never seen before

n Somewhat unsatisfying, though can work depending on the
application

n Probability is then dependent on how many in vocabulary
words are seen in a sentence/text

¤ Use a special symbol for OOV words and estimate the
probability of out of vocabulary

Out of vocabulary

¨  Add an extra word in your vocabulary to denote
OOV (<OOV>, <UNK>)

¨  Replace all words in your training corpus not in the
vocabulary with <UNK>
¤ You’ll get bigrams, trigrams, etc with <UNK>

n p(<UNK> | “I am”)
n p(fast | “I <UNK>”)

¨  During testing, similarly replace all OOV with
<UNK>

Choosing a vocabulary

¨  A common approach (and the one we’ll use for the
assignment):
¤ Replace the first occurrence of each word by <UNK> in

a data set
¤ Estimate probabilities normally

¨  Vocabulary then is all words that occurred two or
more times

¨  This also discounts all word counts by 1 and gives
that probability mass to <UNK>

9/27/11	

5	

Storing the table

see the abacus 1 1/3 1.01 1.01/203
see the abbot 0 0/3 0.01 0.01/203

see the abduct 0 0/3 0.01 0.01/203
see the above 2 2/3 2.01 2.01/203
see the Abram 0 0/3 0.01 0.01/203

… 0.01 0.01/203
see the zygote 0 0/3 0.01 0.01/203

Total 3 3/3 203

How are we storing this table?
Should we store all entries?

Storing the table

¨  Hashtable
¤  fast retrieval
¤  fairly good memory usage

¨  Only store those entries of things we’ve seen
¤  for example, we don’t store |V|3 trigrams

¨  For trigrams we can:
¤ Store one hashtable with bigrams as keys
¤ Store a hashtable of hashtables (I’m recommending this)

Storing the table:
add-lambda smoothing

¨  For those we’ve seen before:

¨  Unseen n-grams: p(z|ab) = ?
!

P(c | ab) =
C(abc) + "
C(ab) + "V

!

P(z | ab) =
"

C(ab) + "V

Store the lower order counts
(or probabilities)

How common are novel events?

0 10000 20000 30000 40000 50000 60000

1

2

3

4

5

6

7

8

9

10

nu
m

be
r

of
 w

or
ds

 o
cc

ur
rin

g
X

tim
es

 in
 th

e
co

rp
us

How likely are novel/unseen events?

9/27/11	

6	

How common are novel events?

0 10000 20000 30000 40000 50000 60000

1

2

3

4

5

6

7

8

9

10

nu
m

be
r

of
 w

or
ds

 o
cc

ur
rin

g
X

tim
es

 in
 th

e
co

rp
us

If we follow the pattern, something like this…

Good-Turing estimation

0 10000 20000 30000 40000 50000 60000

1

2

3

4

5

6

7

8

9

10 9
8
7
6
5
4
3
2
1
0

Good-Turing estimation

¨  Nc = number of words/bigrams occurring c times
¨  Estimate the probability of novel events as:

¨  Replace MLE counts for things with count c:

!

c* = (c +1) Nc+1

Nc

scale down the next
frequency up

!

p(unseen) =
N1

Total_words

Good-Turing (classic example)

¨  Imagine you are fishing
¤  8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass

¨  You have caught
¤  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

¨  How likely is it that the next fish caught is from a new species
(one not seen in our previous catch)?

!

p(unseen) =
N1

Total_words

!

=
3
18

9/27/11	

7	

Good-Turing (classic example)

¨  Imagine you are fishing
¤  8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass

¨  You have caught
¤  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

¨  How likely is it that next species is trout?

!

c* = (c +1) Nc+1

Nc

!

= 2* 1
3

= 0.67

!

0.67
18

Good-Turing (classic example)

¨  Imagine you are fishing
¤  8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass

¨  You have caught
¤  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

¨  How likely is it that next species is perch?

!

c* = (c +1) Nc+1

Nc

N4 is 0!

Nice idea, but kind of a pain to
implement in practice

Problems with frequency based smoothing

¨  The following bigrams have never been seen:

p(X| ate) p(X | San)

Which would add-lambda pick as most likely?

Which would you pick?

Witten-Bell Discounting

¨  Some words are more likely to be followed by new words

San

Diego
Francisco
Luis
Jose
Marcos

ate

food
apples
bananas
hamburgers
a lot
for two
grapes
…

9/27/11	

8	

Witten-Bell Discounting

¨  Probability mass is shifted around, depending on
the context of words

¨  If P(wi | wi-1,…,wi-m) = 0, then the smoothed
probability PWB(wi | wi-1,…,wi-m) is higher if the
sequence wi-1,…,wi-m occurs with many different
words wk

Witten-Bell Smoothing

¨  For bigrams
¤ T(wi-1) is the number of different words (types) that

occur to the right of wi-1

¤ N(wi-1) is the number of times wi-1 occurred

¤ Z(wi-1) is the number of bigrams in the current data set
starting with wi-1 that do not occur in the training data

Witten-Bell Smoothing

¨  if c(wi-1,wi) > 0

!

PWB (wi |wi"1) =
c(wi"1wi)

N(wi"1) + T(wi"1)

times we saw the bigram

times wi-1 occurred + # of types to the right of wi-1

Witten-Bell Smoothing

¨  If c(wi-1,wi) = 0

!

PWB (wi |wi"1) =
T(wi"1)

Z(wi"1)(N + T(wi"1))

9/27/11	

9	

Problems with frequency based smoothing

¨  The following trigrams have never been seen:

p(cumquat | see the)

p(zygote | see the) p(car | see the)

Which would add-lambda pick as most likely?
Good-Turing? Witten-Bell?

Which would you pick?

Better smoothing approaches

¨  Utilize information in lower-order models
¨  Interpolation

¤  p*(z| x,y) = λp(z | x, y) + μp(z | y) + (1-λ-μ)p(z)

¤  Combine the probabilities in some linear combination

¨  Backoff

¤  Often k = 0 (or 1)

¤  Combine the probabilities by “backing off” to lower models only
when we don’t have enough information !

P(z | xy) =
C*(xyz)
C(xy)

if C(xyz) > k

"(xy)P(z | y) otherwise

$
%

& %

Smoothing: Simple Interpolation

¨  Trigram is very context specific, very noisy
¨  Unigram is context-independent, smooth
¨  Interpolate Trigram, Bigram, Unigram for best

combination
¨  How should we determine λ andμ?

!

P(z | xy) " # C(xyz)
C(xy)

+ µ
C(yz)
C(y)

+ (1$ # $µ)C(z)
C(•)

Smoothing: Finding parameter values

¨  Just like we talked about before, split training data
into training and development
¤  can use cross-validation, leave-one-out, etc.

¨  Try lots of different values for λ, µ on heldout data,
pick best

¨  Two approaches for finding these efficiently
¤ EM (expectation maximization)
¤ “Powell search” – see Numerical Recipes in C

9/27/11	

10	

Smoothing: Jelinek-Mercer

¨  Simple interpolation:

¨  Should all bigrams be smoothed equally? Which of
these is more likely to start an unseen trigram?

!

Psmooth (z | xy) = "
C(xyz)
C(xy)

+ (1# ")Psmooth (z | y)

Smoothing: Jelinek-Mercer

¨  Simple interpolation:

¨  Multiple parameters based on frequency bins: smooth a
little after “The Dow”, more after “Adobe acquired”

!

Psmooth (z | xy) = "
C(xyz)
C(xy)

+ (1# ")Psmooth (z | y)

!

Psmooth (z | xy) =

"(C(xy))C(xyz)
C(xy)

+ (1# "(C(xy))Psmooth (z | y)

Smoothing: Jelinek-Mercer continued

¨  Bin counts by frequency and assign λs for each bin
¨  Find λs by cross-validation on held-out data

!

Psmooth (z | xy) =

"(C(xy))C(xyz)
C(xy)

+ (1# "(C(xy))Psmooth (z | y)

Backoff models: absolute discounting

¨  Subtract some absolute number from each of the
counts (e.g. 0.75)
¤ How will this affect rare words?
¤ How will this affect common words?

!

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$
%
&

' &

9/27/11	

11	

Backoff models: absolute discounting

¨  Subtract some absolute number from each of the
counts (e.g. 0.75)
¤ will have a large effect on low counts (rare words)
¤ will have a small effect on large counts (common words)

!

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$
%
&

' &

Backoff models: absolute discounting

!

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$
%
&

' &

What is α(xy)?

Backoff models: absolute discounting

!

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$
%
&

' &

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

the Dow Jones 10
the Dow rose 5
the Dow fell 5

p(cat | see the) = ?

p(puppy | see the) = ?

p(rose | the Dow) = ?

p(jumped | the Dow) = ?

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

p(cat | see the) = ?

!

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$
%
&

' &

!

2 "D
10

=
2 " 0.75
10

= .125

9/27/11	

12	

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

p(puppy | see the) = ?

α(see the) = ?

How much probability mass did
we reserve/discount for the
bigram model?

!

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$
%
&

' &

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

p(puppy | see the) = ?

α(see the) = ?

of types starting with “see the” * D

count(“see the”)

For each of the unique trigrams, we
subtracted D/count(“see the”) from the
probability distribution

!

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$
%
&

' &

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

!

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$
%
&

' &

p(puppy | see the) = ?

α(see the) = ?

!

reserved_mass(see the) =
6*D
10

=
6*0.75

10
= 0.45

distribute this probability mass to all
bigrams that we are backing off to

of types starting with “see the” * D

count(“see the”)

Calculating α

¨  We have some number of bigrams we’re going to
backoff to, i.e. those X where C(see the X) = 0, that is
unseen trigrams starting with “see the”

¨  When we backoff, for each of these, we’ll be
including their probability in the model: P(X | the)

¨ αis the normalizing constant so that the sum of these
probabilities equals the reserved probability mass

!(see the) p(X| the)
X:C(see the X) == 0

! = reserved _mass(see the)

9/27/11	

13	

Calculating α

¨  We can calculate α two ways
¤  Based on those we haven’t seen:

¤ Or, more often, based on those we do see:

!

"(see the) =
reserved _mass(see the)

p(X | the)
X :C (see the X) = 0
#

!

"(see the) =
reserved _mass(see the)

1# p(X | the)
X :C (see the X) > 0

$

Calculating α in general: trigrams

¨  Calculate the reserved mass

¨  Calculate the sum of the backed off probability. For bigram “A B”:

¨  Calculate α

reserved_mass(bigram) =
of types starting with bigram * D

count(bigram)

!

1" p(X | B)
X :C (A B X) > 0
#

!

p(X | B)
X :C (A B X) = 0
"either is fine in practice,

the left is easier

!

"(A B) =
reserved _mass(A B)

1# p(X | B)
X :C (A B X) > 0
$

1 – the sum of the
bigram probabilities of
those trigrams that we
saw starting with bigram
A B

Calculating α in general: bigrams

¨  Calculate the reserved mass

¨  Calculate the sum of the backed off probability. For bigram “A B”:

¨  Calculate α

reserved_mass(unigram) =
of types starting with unigram * D

count(unigram)

!

1" p(X)
X :C (A X) > 0
#

!

p(X)
X :C (A X) = 0
"either is fine in practice,

the left is easier

!

"(A) =
reserved _mass(A)

1# p(X)
X :C (A X) > 0
$

1 – the sum of the
unigram probabilities of
those bigrams that we
saw starting with word A

Calculating backoff models in practice

¨  Store the αs in another table
¤  If it’s a trigram backed off to a bigram, it’s a table keyed by the

bigrams
¤  If it’s a bigram backed off to a unigram, it’s a table keyed by the

unigrams

¨  Compute the αs during training
¤  After calculating all of the probabilities of seen unigrams/bigrams/

trigrams
¤  Go back through and calculate the αs (you should have all of the

information you need)

¨  During testing, it should then be easy to apply the backoff model
with the αs pre-calculated

9/27/11	

14	

Backoff models: absolute discounting

p(jumped | the Dow) = ?

What is the reserved mass?

the Dow Jones 10
the Dow rose 5
the Dow fell 5

!

reserved_mass(the Dow) =
3*D
20

=
3*0.75

20
= 0.115

of types starting with “see the” * D

count(“see the”)

!

"(the Dow) =
reserved _mass(see the)

1# p(X | the)
X :C (the Dow X) > 0

$

Backoff models: absolute discounting

¨  Two nice attributes:
¤ decreases if we’ve seen more bigrams

n  should be more confident that the unseen trigram is no good

¤  increases if the bigram tends to be followed by lots of
other words
n will be more likely to see an unseen trigram

reserved_mass =
of types starting with bigram * D

count(bigram)

Kneser-Ney

¨  Idea: not all counts should be discounted with the same value

P(Francisco | eggplant) vs
P(stew | eggplant)

If we’ve never seen either bigram before, which should be
more likely? why?

What would an normal discounted backoff model say?

What is the problem?

common

rarer

Kneser-Ney

¨  Idea: not all counts should be discounted with the same value

P(Francisco | eggplant) vs
P(stew | eggplant)

Problem:
-  Both of these would have the same backoff parameter
since they’re both conditioning on eggplant
-  We then would end up picking based on which was most
frequent
-  However, even though Francisco tends to only be
preceded by a small number of words

9/27/11	

15	

Kneser-Ney

¨  Idea: not all counts should be discounted with the same
value

¨  “Francisco” is common, so backoff/interpolated
methods say it is likely
¤  But it only occurs in context of “San”

¨  “stew” is common in many contexts

¨  Weight backoff by number of contexts word occurs in

P(Francisco | eggplant) low
P(stew | eggplant) higher

Kneser-Ney

!

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$
%
&

' &

!

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)PCONTINUATION (z | y) otherwise

$
%
&

' &

instead of the probability of
the word/bigram occurring,
use the probability of the
word to follow other words

PCONTINUATION

¨  Relative to other words, how likely is this word to
continue (i.e. follow) many other words

!

PCONTINUATION (z | y) =
types ending with yz

types ending with bigram bc
bc"bigrams
#

!

=
{xyz :C(xyz) > 0}
{abc :C(abc) > 0}

bc"bigrams
#

Other language model ideas?

¨  Skipping models: rather than just the previous 2 words,
condition on the previous word and the 3rd word back,
etc.

¨  Caching models: phrases seen are more likely to be seen
again (helps deal with new domains)

¨  Clustering:
¤  some words fall into categories (e.g. Monday, Tuesday,

Wednesday…)
¤  smooth probabilities with category probabilities

¨  Domain adaptation:
¤  interpolate between a general model and a domain specific

model

9/27/11	

16	

Smoothing results Take home ideas

¨  Key idea of smoothing is to redistribute the
probability to handle less seen (or never seen)
events
¤ Must always maintain a true probability distribution

¨  Lots of ways of smoothing data
¨  Should take into account features in your data!
¨  For n-grams, backoff models and, in particular,

Kneser-Ney smoothing work well

Language Modeling Toolkits

¨  SRI
¤ http://www-speech.sri.com/projects/srilm/

¨  CMU
¤ http://www.speech.cs.cmu.edu/SLM_info.html

