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Language acquisition 

¨  http://www.youtube.com/watch?v=RE4ce4mexrU 

LANGUAGE MODELING: 
SMOOTHING 
David Kauchak 
CS457 – Fall 2011 

some slides adapted from 
Jason Eisner 

Admin 

¨  Assignment 2 out 
¤  bigram language modeling 
¤  Java 
¤ Can work with partners 

n  Anyone looking for a partner? 
¤ Due Wednesday 10/5  
¤  Style/commenting (JavaDoc) 
¤  Some advice 

n  Start now! 
n  Spend 1-2 hours working out an example by hand (you can check 

your answers with me) 
n  HashMap 

 

Admin 

¨  Our first quiz next Tuesday (10/4) 
¤  In-class (~30 min.) 
¤ Topics 

n  corpus analysis 
n  regular expressions 
n probability 
n  language modeling 

¤ Open book 
n we’ll try it out for this one 
n better to assume closed book (30 minutes goes by fast!) 

¤ 7.5% of your grade 
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Today 

smoothing 
techniques 

Today 

¨  Take home ideas: 
¤ Key idea of smoothing is to redistribute the probability 

to handle less seen (or never seen) events 
n Still must always maintain a true probability distribution 

¤ Lots of ways of smoothing data 
¤ Should take into account features in your data! 

Smoothing 

P(I think today is a good day to be me) = 

P(I | <start> <start>) x 

P(think | <start> I) x 

P(today| I think) x 

P(is| think today) x 

P(a| today is) x 

P(good| is a) x 

… 

If any of these has never been 
seen before, prob = 0! 

What if our test set contains the following sentence, but one of the 
trigrams never occurred in our training data? 

Smoothing 

P(I think today is a good day to be me) = 

P(I | <start> <start>) x 

P(think | <start> I) x 

P(today| I think) x 

P(is| think today) x 

P(a| today is) x 

P(good| is a) x 

… 

These probability estimates 
may be inaccurate.  
Smoothing can help reduce 
some of the noise. 
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Add-lambda smoothing 

¨  A large dictionary makes novel events too probable. 
¨  add λ = 0.01 to all counts 

see the abacus   1 1/3 1.01 1.01/203 
see the abbot  0 0/3 0.01 0.01/203 

see the abduct 0 0/3 0.01 0.01/203 
see the above 2 2/3 2.01 2.01/203 
see the Abram 0 0/3 0.01 0.01/203 

… 0.01 0.01/203 
see the zygote 0 0/3 0.01 0.01/203 

Total 3 3/3 203 

Vocabulary 

¨  n-gram language modeling assumes we have a fixed 
vocabulary 
¤ why? 

¨  Whether implicit or explicit, an n-gram language model 
is defined over a finite, fixed vocabulary 

¨  What happens when we encounter a word not in our 
vocabulary (Out Of Vocabulary)? 
¤  If we don’t do anything, prob = 0 
¤  Smoothing doesn’t really help us with this! 

Vocabulary 

¨  To make this explicit, smoothing helps us with… 

see the abacus   1 1.01 
see the abbot  0 0.01 

see the abduct 0 0.01 
see the above 2 2.01 
see the Abram 0 0.01 

… 0.01 
see the zygote 0 0.01 

all entries in our vocabulary 

Vocabulary 

¨  and… 
Vocabulary 

a 
able 
about 
account 
acid 
across 
… 
young 
zebra 

10 
1 
2 
0 
0 
3 
… 
1 
0 

Counts 

10.01 
1.01 
2.01 
0.01 
0.01 
3.01 
… 
1.01 
0.01 

Smoothed counts 

How can we have words in our 
vocabulary we’ve never seen before? 
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Vocabulary 

¨  Choosing a vocabulary: ideas? 
¤ Grab a list of English words from somewhere 
¤ Use all of the words in your training data 
¤ Use some of the words in your training data 

n  for example, all those the occur more than k times 

¨  Benefits/drawbacks? 
¤  Ideally your vocabulary should represents words you’re 

likely to see 
¤  Too many words: end up washing out your probability 

estimates (and getting poor estimates) 
¤  Too few: lots of out of vocabulary 

Vocabulary 

¨  No matter your chosen vocabulary, you’re still going 
to have out of vocabulary (OOV) 

¨  How can we deal with this? 
¤  Ignore words we’ve never seen before 

n Somewhat unsatisfying, though can work depending on the 
application 

n Probability is then dependent on how many in vocabulary 
words are seen in a sentence/text 

¤ Use a special symbol for OOV words and estimate the 
probability of out of vocabulary 

Out of vocabulary 

¨  Add an extra word in your vocabulary to denote 
OOV (<OOV>, <UNK>) 

¨  Replace all words in your training corpus not in the 
vocabulary with <UNK> 
¤ You’ll get bigrams, trigrams, etc with <UNK> 

n p(<UNK> | “I am”) 
n p(fast | “I <UNK>”) 

¨  During testing, similarly replace all OOV with 
<UNK> 

 

Choosing a vocabulary 

¨  A common approach (and the one we’ll use for the 
assignment): 
¤ Replace the first occurrence of each word by <UNK> in 

a data set 
¤ Estimate probabilities normally 

¨  Vocabulary then is all words that occurred two or 
more times 

¨  This also discounts all word counts by 1 and gives 
that probability mass to <UNK> 
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Storing the table 

see the abacus   1 1/3 1.01 1.01/203 
see the abbot  0 0/3 0.01 0.01/203 

see the abduct 0 0/3 0.01 0.01/203 
see the above 2 2/3 2.01 2.01/203 
see the Abram 0 0/3 0.01 0.01/203 

… 0.01 0.01/203 
see the zygote 0 0/3 0.01 0.01/203 

Total 3 3/3 203 

How are we storing this table? 
Should we store all entries? 

Storing the table 

¨  Hashtable 
¤  fast retrieval 
¤  fairly good memory usage 

¨  Only store those entries of things we’ve seen 
¤  for example, we don’t store |V|3 trigrams 

¨  For trigrams we can: 
¤ Store one hashtable with bigrams as keys 
¤ Store a hashtable of hashtables (I’m recommending this) 

Storing the table:  
add-lambda smoothing 

¨  For those we’ve seen before: 

¨  Unseen n-grams: p(z|ab) = ? 
! 

P(c | ab) =
C(abc) + "
C(ab) + "V

! 

P(z | ab) =
"

C(ab) + "V

Store the lower order counts 
(or probabilities) 

How common are novel events? 
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How likely are novel/unseen events? 
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How common are novel events? 
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If we follow the pattern, something like this… 

Good-Turing estimation 
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Good-Turing estimation 

¨  Nc = number of words/bigrams occurring c times 
¨  Estimate the probability of novel events as: 

 
¨  Replace MLE counts for things with count c: 

! 

c* = (c +1) Nc+1

Nc

scale down the next 
frequency up  

! 

p(unseen) =
N1

Total_words

Good-Turing (classic example) 

¨  Imagine you are fishing 
¤  8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass 

¨  You have caught  
¤  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish 

¨  How likely is it that the next fish caught is from a new species 
(one not seen in our previous catch)? 

! 

p(unseen) =
N1

Total_words

! 

=
3
18
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Good-Turing (classic example) 

¨  Imagine you are fishing 
¤  8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass 

¨  You have caught  
¤  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish 

¨  How likely is it that next species is trout? 

! 

c* = (c +1) Nc+1

Nc

! 

= 2* 1
3

= 0.67

! 

0.67
18

Good-Turing (classic example) 

¨  Imagine you are fishing 
¤  8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass 

¨  You have caught  
¤  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish 

¨  How likely is it that next species is perch? 

! 

c* = (c +1) Nc+1

Nc

N4 is 0! 

Nice idea, but kind of a pain to 
implement in practice 

Problems with frequency based smoothing 

¨  The following bigrams have never been seen: 
 

p( X| ate) p( X | San ) 

Which would add-lambda pick as most likely? 
 
Which would you pick? 

Witten-Bell Discounting 

¨  Some words are more likely to be followed by new words 

San 

Diego 
Francisco 
Luis 
Jose 
Marcos 

ate 

food 
apples 
bananas 
hamburgers 
a lot 
for two 
grapes 
… 
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Witten-Bell Discounting 

¨  Probability mass is shifted around, depending on 
the context of words 

¨  If P(wi | wi-1,…,wi-m) = 0, then the smoothed 
probability PWB(wi | wi-1,…,wi-m) is higher if the 
sequence wi-1,…,wi-m  occurs with many different 
words wk 

Witten-Bell Smoothing 

¨  For bigrams 
¤ T(wi-1) is the number of different words (types) that 

occur to the right of wi-1 

¤ N(wi-1) is the number of times wi-1 occurred 

¤ Z(wi-1) is the number of bigrams in the current data set 
starting with wi-1 that do not occur in the training data 

Witten-Bell Smoothing 

¨  if c(wi-1,wi) > 0 

! 

PWB (wi |wi"1) =
c(wi"1wi)

N(wi"1) + T(wi"1)

# times we saw the bigram 

# times wi-1 occurred   +   # of types to the right of wi-1 

Witten-Bell Smoothing 

¨  If c(wi-1,wi) = 0 

 
 

! 

PWB (wi |wi"1) =
T(wi"1)

Z(wi"1)(N + T(wi"1))
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Problems with frequency based smoothing 

¨  The following trigrams have never been seen: 
 

p( cumquat | see the ) 

p( zygote | see the ) p( car | see the ) 

Which would add-lambda pick as most likely?  
Good-Turing? Witten-Bell? 
 
Which would you pick? 

Better smoothing approaches 

¨  Utilize information in lower-order models 
¨  Interpolation 

¤  p*(z| x,y) = λp(z | x, y) + μp(z | y) + (1-λ-μ)p(z) 

¤  Combine the probabilities in some linear combination 

¨  Backoff 

¤  Often k = 0 (or 1) 

¤  Combine the probabilities by “backing off” to lower models only 
when we don’t have enough information ! 

P(z | xy) =
C*(xyz)
C(xy)

if C(xyz) > k

"(xy)P(z | y) otherwise

# 

$ 
% 

& % 

Smoothing: Simple Interpolation 

¨  Trigram is very context specific, very noisy 
¨  Unigram is context-independent, smooth 
¨  Interpolate Trigram, Bigram, Unigram for best 

combination 
¨  How should we determine λ andμ?  

! 

P(z | xy) " # C(xyz)
C(xy)

+ µ
C(yz)
C(y)

+ (1$ # $µ)C(z)
C(•)

Smoothing: Finding parameter values 

¨  Just like we talked about before, split training data 
into training and development 
¤  can use cross-validation, leave-one-out, etc. 

¨  Try lots of different values for λ, µ on heldout data, 
pick best 

¨  Two approaches for finding these efficiently 
¤ EM (expectation maximization) 
¤ “Powell search” – see Numerical Recipes in C 
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Smoothing: Jelinek-Mercer 

¨  Simple interpolation: 

¨  Should all bigrams be smoothed equally? Which of 
these is more likely to start an unseen trigram? 

! 

Psmooth (z | xy) = "
C(xyz)
C(xy)

+ (1# ")Psmooth (z | y)

Smoothing: Jelinek-Mercer 

¨  Simple interpolation: 

¨  Multiple parameters based on frequency bins: smooth a 
little after “The Dow”,  more after “Adobe acquired”  

! 

Psmooth (z | xy) = "
C(xyz)
C(xy)

+ (1# ")Psmooth (z | y)

! 

Psmooth (z | xy) =

"(C(xy))C(xyz)
C(xy)

+ (1# "(C(xy))Psmooth (z | y)

Smoothing: Jelinek-Mercer continued 

¨  Bin counts by frequency and assign λs for each bin 
¨  Find  λs  by cross-validation on held-out data 

! 

Psmooth (z | xy) =

"(C(xy))C(xyz)
C(xy)

+ (1# "(C(xy))Psmooth (z | y)

Backoff models: absolute discounting 

¨  Subtract some absolute number from each of the 
counts (e.g. 0.75) 
¤ How will this affect rare words? 
¤ How will this affect common words? 

! 

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 
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Backoff models: absolute discounting 

¨  Subtract some absolute number from each of the 
counts (e.g. 0.75) 
¤ will have a large effect on low counts (rare words) 
¤ will have a small effect on large counts (common words) 

! 

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

Backoff models: absolute discounting 

! 

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

What is α(xy)? 

Backoff models: absolute discounting 

! 

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

see the dog   1 
see the cat   2 
see the banana  4 
see the man   1 
see the woman  1 
see the car   1 

the Dow Jones  10 
the Dow rose   5 
the Dow fell   5 

p( cat | see the ) = ? 

p( puppy | see the ) = ? 

p( rose | the Dow ) = ? 

p( jumped | the Dow ) = ? 

Backoff models: absolute discounting 

see the dog   1 
see the cat   2 
see the banana  4 
see the man   1 
see the woman  1 
see the car   1 

p( cat | see the ) = ? 

! 

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

! 

2 "D
10

=
2 " 0.75
10

= .125
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Backoff models: absolute discounting 

see the dog   1 
see the cat   2 
see the banana  4 
see the man   1 
see the woman  1 
see the car   1 

p( puppy | see the ) = ? 

α(see the) = ? 

How much probability mass did 
we reserve/discount for the 
bigram model? 

! 

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

Backoff models: absolute discounting 

see the dog   1 
see the cat   2 
see the banana  4 
see the man   1 
see the woman  1 
see the car   1 

p( puppy | see the ) = ? 

α(see the) = ? 

# of types starting with “see the” * D 

count(“see the”) 

For each of the unique trigrams, we 
subtracted D/count(“see the”) from the 
probability distribution 

! 

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

Backoff models: absolute discounting 

see the dog   1 
see the cat   2 
see the banana  4 
see the man   1 
see the woman  1 
see the car   1 

! 

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

p( puppy | see the ) = ? 

α(see the) = ? 

! 

reserved_mass(see the) =
6*D
10

=
6*0.75

10
= 0.45

distribute this probability mass to all 
bigrams that we are backing off to 

# of types starting with “see the” * D 

count(“see the”) 

Calculating α 

¨  We have some number of bigrams we’re going to 
backoff to, i.e. those X where C(see the X) = 0, that is 
unseen trigrams starting with “see the” 

¨  When we backoff, for each of these, we’ll be 
including their probability in the model: P(X | the) 

¨ αis the normalizing constant so that the sum of these 
probabilities equals the reserved probability mass 

!(see the) p(X| the)
X:C(see the X) == 0

! = reserved _mass(see the)
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Calculating α 

¨  We can calculate α two ways 
¤  Based on those we haven’t seen: 

¤ Or, more often, based on those we do see: 

! 

"(see the) =
reserved _mass(see the)

p(X | the)
X :C (see the X) = 0
#

! 

"(see the) =
reserved _mass(see the)

1# p(X | the)
X :C (see the X) >  0

$

Calculating α in general: trigrams 

¨  Calculate the reserved mass 

 

 

¨  Calculate the sum of the backed off probability.  For bigram “A B”: 

¨  Calculate α 

reserved_mass(bigram) =  
# of types starting with bigram * D 

count(bigram) 

! 

1" p(X | B)
X :C (A B X) >  0
#

! 

p(X | B)
X :C (A B X) = 0
"either is fine in practice, 

the left is easier 

! 

"(A B) =
reserved _mass(A B)

1# p(X | B)
X :C (A B X) >  0
$

1 – the sum of the 
bigram probabilities of 
those trigrams that we 
saw starting with bigram 
A B 

Calculating α in general: bigrams 

¨  Calculate the reserved mass 

 

 

¨  Calculate the sum of the backed off probability.  For bigram “A B”: 

¨  Calculate α 

reserved_mass(unigram) =  
# of types starting with unigram * D 

count(unigram) 

! 

1" p(X)
X :C (A X) >  0
#

! 

p(X)
X :C (A X) = 0
"either is fine in practice, 

the left is easier 

! 

"(A) =
reserved _mass(A)

1# p(X)
X :C (A X) >  0
$

1 – the sum of the 
unigram probabilities of 
those bigrams that we 
saw starting with word A 

Calculating backoff models in practice 

¨  Store the αs in another table 
¤  If it’s a trigram backed off to a bigram, it’s a table keyed by the 

bigrams 
¤  If it’s a bigram backed off to a unigram, it’s a table keyed by the 

unigrams 

¨  Compute the αs during training 
¤  After calculating all of the probabilities of seen unigrams/bigrams/

trigrams 
¤  Go back through and calculate the αs (you should have all of the 

information you need) 

¨  During testing, it should then be easy to apply the backoff model 
with the αs pre-calculated  
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Backoff models: absolute discounting 

p( jumped | the Dow ) = ? 

What is the reserved mass? 

the Dow Jones  10 
the Dow rose   5 
the Dow fell   5 

! 

reserved_mass(the Dow) =
3*D
20

=
3*0.75

20
= 0.115

# of types starting with “see the” * D 

count(“see the”) 

! 

"(the Dow) =
reserved _mass(see the)

1# p(X | the)
X :C ( the Dow X) >  0

$

Backoff models: absolute discounting 

¨  Two nice attributes: 
¤ decreases if we’ve seen more bigrams 

n  should be more confident that the unseen trigram is no good 

¤  increases if the bigram tends to be followed by lots of 
other words 
n will be more likely to see an unseen trigram 

reserved_mass =  
# of types starting with bigram * D 

count(bigram) 

Kneser-Ney 

¨  Idea: not all counts should be discounted with the same value 
 

P(Francisco | eggplant) vs  
P(stew | eggplant) 

If we’ve never seen either bigram before, which should be 
more likely? why? 
 
What would an normal discounted backoff model say? 
 
What is the problem? 

common 

rarer 

Kneser-Ney 

¨  Idea: not all counts should be discounted with the same value 
 

P(Francisco | eggplant) vs  
P(stew | eggplant) 

Problem: 
-  Both of these would have the same backoff parameter 
since they’re both conditioning on eggplant 
-  We then would end up picking based on which was most 
frequent 
-  However, even though Francisco tends to only be 
preceded by a small number of words 
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Kneser-Ney 

¨  Idea: not all counts should be discounted with the same 
value 

¨   “Francisco” is common, so backoff/interpolated 
methods say it is likely 
¤  But it only occurs in context of “San” 

¨  “stew” is common in many contexts 

¨  Weight backoff by number of contexts word occurs in 

P(Francisco | eggplant)   low 
P(stew | eggplant)   higher 

Kneser-Ney 

! 

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

! 

Pabsolute (z | xy) =

C(xyz) "D
C(xy)

if C(xyz) > 0

#(xy)PCONTINUATION (z | y) otherwise

$ 
% 
& 

' & 

instead of the probability of 
the word/bigram occurring, 
use the probability of the 
word to follow other words 

PCONTINUATION 

¨  Relative to other words, how likely is this word to 
continue (i.e. follow) many other words 

! 

PCONTINUATION (z | y) =
#  types ending with yz

# types ending with bigram bc
bc"bigrams
#

! 

=
{xyz :C(xyz) > 0}
{abc :C(abc) > 0}

bc"bigrams
#

Other language model ideas? 

¨  Skipping models: rather than just the previous 2 words, 
condition on the previous word and the 3rd word back, 
etc. 

¨  Caching models: phrases seen are more likely to be seen 
again (helps deal with new domains) 

¨  Clustering:  
¤  some words fall into categories (e.g. Monday, Tuesday, 

Wednesday…) 
¤  smooth probabilities with category probabilities 

¨  Domain adaptation: 
¤  interpolate between a general model and a domain specific 

model 
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Smoothing results Take home ideas 

¨  Key idea of smoothing is to redistribute the 
probability to handle less seen (or never seen) 
events 
¤ Must always maintain a true probability distribution 

¨  Lots of ways of smoothing data 
¨  Should take into account features in your data! 
¨  For n-grams, backoff models and, in particular, 

Kneser-Ney smoothing work well 

Language Modeling Toolkits 

¨  SRI 
¤ http://www-speech.sri.com/projects/srilm/ 

¨  CMU 
¤ http://www.speech.cs.cmu.edu/SLM_info.html 


