Language acquisition

http://www.youtube.com/watch?v=RE4ce4mexrU

Admin

- Assignment 2 out
- bigram language modeling
- 🗖 Java
- Can work with partners
- Anyone looking for a partner?Due Wednesday 10/5
- Style/commenting (JavaDoc)
- Some advice
 - Start now!
 - Spend 1-2 hours working out an example by hand (you can check your answers with me)
 - . ■ HashMap

Admin

- Our first quiz next Tuesday (10/4)
 In-class (~30 min.)
 - Topics
 - corpus analysis
 - regular expressions
 - probability
 - language modeling
 - Open book
 - we'll try it out for this one
 - better to assume closed book (30 minutes goes by fast!)
 - 7.5% of your grade

Smoothing

What if our test set contains the following sentence, but one of the trigrams never occurred in our training data?

P(I think today is a good day to be me) =

- P(I | <start> <start>) x
- P(think | < start > I) xP(today | I think) x
- P(today) 1 think) x P(is| think today) x

P(a | today is) x

- P(good | is a) x
- ...
- If any of these has never been seen before, prob = 0!

	Add-lan	nbda sr	noothin	g	
	4.1 19.49				
	A large dictio	nary makes i	novel events	too proba	ble.
	add $\lambda = 0.01$	to all counts	5		
	see the abacus	1	1/3	1.01	1.01/203
	see the abbot	0	0/3	0.01	0.01/203
	see the abduct	0	0/3	0.01	0.01/203
	see the above	2	2/3	2.01	2.01/203
	see the Abram	0	0/3	0.01	0.01/203
				0.01	0.01/203
	see the zygote	0	0/3	0.01	0.01/203
_	Total	3	3/3	203	

Vocabulary					
To make this explicitly a state of the second se	To make this explicit, smoothing helps us with				
all entries in our voc	all entries in our vocabulary				
1					
see the abacus	1	1.01			
see the abbot	0	0.01			
see the abduct	0	0.01			
see the above	2	2.01			
see the Abram	0	0.01			
		0.01			
see the zygote	0	0.01			
			1		
see the zygote	0	0.01			

Vocabulary

□ Choosing a vocabulary: ideas?

- Grab a list of English words from somewhere
- Use all of the words in your training data
- Use some of the words in your training data for example, all those the occur more than k times
- Benefits/drawbacks?
 - Ideally your vocabulary should represents words you're likely to see
 - Too many words: end up washing out your probability estimates (and getting poor estimates)
 - Too few: lots of out of vocabulary

Vocabulary

- □ No matter your chosen vocabulary, you're still going to have out of vocabulary (OOV)
- □ How can we deal with this?
 - Ignore words we've never seen before
 - Somewhat unsatisfying, though can work depending on the application
 - Probability is then dependent on how many in vocabulary words are seen in a sentence/text
 - Use a special symbol for OOV words and estimate the probability of out of vocabulary

Out of vocabulary

- Add an extra word in your vocabulary to denote OOV (<OOV>, <UNK>)
- Replace all words in your training corpus not in the vocabulary with <UNK>
 - You'll get bigrams, trigrams, etc with <UNK> ■ p(<UNK> | "I am")

 - p(fast | "I <UNK>")
- During testing, similarly replace all OOV with <UNK>

Choosing a vocabulary

- □ A common approach (and the one we'll use for the assignment):
 - Replace the first occurrence of each word by <UNK> in a data set
 - Estimate probabilities normally
- Vocabulary then is all words that occurred two or more times
- □ This also discounts all word counts by 1 and gives that probability mass to <UNK>

Storing the table					
How are we storing this table? Should we store all entries?					
	see the abacus	1	1/3	1.01	1.01/203
	see the abbot	0	0/3	0.01	0.01/203
	see the abduct	0	0/3	0.01	0.01/203
	see the above	2	2/3	2.01	2.01/203
	see the Abram	0	0/3	0.01	0.01/203
				0.01	0.01/203
	see the zygote	0	0/3	0.01	0.01/203
-	Total	3	3/3	203	

□ For those we've seen before:

$$P(c \mid ab) = \frac{C(abc) + \lambda}{C(ab) + \lambda V}$$

□ Unseen n-grams: p(z | ab) = ?

$$P(z \mid ab) = \frac{\lambda}{C(ab) + \lambda V}$$

Store the lower order counts (or probabilities)

Good-Turing estimation

N_c = number of words/bigrams occurring c times
 Estimate the probability of novel events as:

$$p(unseen) = \frac{N_1}{Total_words}$$

□ Replace MLE counts for things with count c:

$$c^* = (c+1) \frac{N_{c+1}}{N_c}$$
 scale down the

scale down the next frequency up

Problems with frequency based smoothing

The following bigrams have never been seen:

p(X | San) p(X | ate)

Which would add-lambda pick as most likely?

Which would you pick?

Witten-Bell Discounting

Some words are more likely to be followed by new words

Diego Francisco San Luis Jose Marcos food apples bananas ate hamburgers a lot for two grapes ...

Witten-Bell Discounting

- Probability mass is shifted around, depending on the context of words
- □ If P(w_i | w_{i-1},...,w_{i-m}) = 0, then the smoothed probability P_{WB}(w_i | w_{i-1},...,w_{i-m}) is higher if the sequence w_{i-1},...,w_{i-m} occurs with many different words w_k

Witten-Bell Smoothing

For bigrams

- □ T(w_{i-1}) is the number of different words (types) that occur to the right of w_{i-1}
- \blacksquare N(w_{i\text{-1}}) is the number of times w_{i\text{-1}} occurred
- \blacksquare Z(w_{i,-1}) is the number of bigrams in the current data set starting with w_{i,-1} that do not occur in the training data

Witten-Bell Smoothing

 $\square \text{ if } c(w_{i-1}, w_i) > 0$

$$P^{WB}(w_i | w_{i-1}) = \frac{c(w_{i-1}w_i)}{N(w_{i-1}) + T(w_{i-1})}$$

times we saw the bigram

times w_{i-1} occurred + # of types to the right of w_{i-1}

Witten-Bell Smoothing

 $\Box \text{ If } c(w_{i-1}, w_i) = 0$

$$P^{WB}(w_i \mid w_{i-1}) = \frac{T(w_{i-1})}{Z(w_{i-1})(N + T(w_{i-1}))}$$

Smoothing: Simple Interpolation

$$P(z \mid xy) \approx \lambda \frac{C(xyz)}{C(xy)} + \mu \frac{C(yz)}{C(y)} + (1 - \lambda - \mu) \frac{C(z)}{C(\bullet)}$$

- □ Trigram is very context specific, very noisy
- Unigram is context-independent, smooth
- Interpolate Trigram, Bigram, Unigram for best combination
- \square How should we determine λ and μ ?

Smoothing: Finding parameter values

- Just like we talked about before, split training data into training and development
 can use cross-validation, leave-one-out, etc.
- \square Try lots of different values for $\lambda,\,\mu$ on heldout data, pick best
- Two approaches for finding these efficiently
 EM (expectation maximization)

Smoothing: Jelinek-Mercer

Simple interpolation:

$$P_{smooth}(z \mid xy) = \lambda \frac{C(xyz)}{C(xy)} + (1 - \lambda)P_{smooth}(z \mid y)$$

 Multiple parameters based on frequency bins: smooth a little after "The Dow", more after "Adobe acquired"

$$P_{smooth}(z \mid xy) = \lambda(C(xy))\frac{C(xyz)}{C(xy)} + (1 - \lambda(C(xy))P_{smooth}(z \mid y))$$

Smoothing: Jelinek-Mercer continued

$$P_{smooth}(z \mid xy) =$$

$$\lambda(C(xy))\frac{C(xyz)}{C(xy)} + (1 - \lambda(C(xy))P_{smooth}(z \mid y)$$

Bin counts by frequency and assign λs for each bin
 Find λs by cross-validation on held-out data

	Backoff mo	odels: al	osolute discour	nting
	see the dog	1	the Dow Jones	10
	see the cat	2	the Dow rose	5
	see the banana	4	the Dow fell	5
	see the man	1		
	see the woman	1		
	see the car	1	p(rose the Dow)	= \$
F	o(cat see the) =	Ś	p(jumped the Do) = ś
F	o(puppy see the) = ś		
			$P_{absolute}(z \mid xy) =$	
			$\begin{cases} \frac{C(xyz) - D}{C(xy)} \end{cases}$	if $C(xyz) > 0$
			$\alpha(xy)P_{absolute}(z)$	y) otherwise

Backoff ma	odels: d	absolute discounti	ng
see the dog see the cat see the banana see the man see the woman see the car	1 2 4 1 1 1	p(cat see the) = ? $\frac{2-D}{10} = \frac{2-0.75}{10} = .125$	
		$\begin{split} P_{absolute}(z \mid xy) = \\ \begin{cases} \frac{C(xyz) - D}{C(xy)} \\ \alpha(xy) P_{absolute}(z \mid y) \end{cases} \end{split}$	if C(xyz) > 0 otherwise

$\begin{aligned} \text{Calculate the reserved mass} \\ & \qquad \qquad$	Calculating α in general: bigrams
• Calculate the reserved mass $= \frac{\# \text{ of } types \text{ starting with unigram * D}}{\text{count(unigram)}}$ • Calculate the sum of the backed off probability. For bigram "A B": $1 - \sum_{X:C(AX) > 0} p(X) \text{either is fine in practice,} \sum_{X:C(AX) = 0} p(X)$ • Calculate α $\alpha(A) = \frac{reserved_mass(A)}{1 - \sum_{X:C(AX) > 0}} \qquad 1 - \text{the sum of the unigram probabilities of those bigrams that we saw starting with word A}$	
$\frac{\text{# of types starting with unigram * D}}{\text{count(unigram)}} = \frac{\text{# of types starting with unigram * D}}{\text{count(unigram)}}$ Calculate the sum of the backed off probability. For bigram "A B": $1 - \sum_{x: \mathcal{L}(A X) > 0} p(X) \text{either is fine in practice,} \sum_{x: \mathcal{L}(A X) = 0} p(X)$ Calculate α $\alpha(A) = \frac{reserved_mass(A)}{1 - \sum_{x: \mathcal{L}(A X) > 0}} \qquad 1 - \text{the sum of the unigram probabilities of those bigrams that we saw starting with word A}$	 Calculate the reserved mass
$1 - \sum_{X:\mathcal{L}(A:X) > 0} p(X) \qquad \text{either is fine in practice,} \qquad \sum_{X:\mathcal{L}(A:X) = 0} p(X)$ $1 - \sum_{X:\mathcal{L}(A:X) > 0} \text{ the left is easier} \qquad \sum_{X:\mathcal{L}(A:X) = 0} p(X)$ 1 - the sum of the unigram probabilities of those bigrams that we saw starting with word A	# of types starting with unigram * D reserved_mass(unigram) = count(unigram) Count(unigram) Count(unigram)
$1 - \sum_{X:\mathcal{L}(AX) > 0} p(X) \text{either is fine in practice,} \sum_{X:\mathcal{L}(AX) = 0} p(X)$ • Calculate α $\alpha(A) = \frac{reserved_mass(A)}{1 - \sum_{X:\mathcal{L}(AX) > 0} p(X)} 1 - \text{the sum of the unigram probabilities of those bigrams that we saw starting with word A}$	Calculate the sum of the backed off probability. For bigram A b :
Calculate α $\alpha(A) = \frac{reserved_mass(A)}{1 - \sum_{X:C(A:X) > 0}}$ 1 - the sum of the unigram probabilities of those bigrams that we saw starting with word A	$1 - \sum_{X:\mathcal{L}(A X) > 0} p(X) \qquad \text{either is fine in practice,} \qquad \sum_{X:\mathcal{L}(A X) = 0} p(X)$ the left is easier $\sum_{X:\mathcal{L}(A X) = 0} p(X)$
	Calculate α $\alpha(A) = \frac{reserved_mass(A)}{1 - \sum_{X \in (A X) > 0} p(X)}$ $1 - \text{the sum of the unigram probabilities of those bigrams that we saw starting with word A}$

Kneser-Ney

Idea: not all counts should be discounted with the same value

P(Francisco | eggplant) vs P(stew | eggplant)

If we've never seen either bigram before, which should be more likely? why?

What would an normal discounted backoff model say?

What is the problem?

Language Modeling Toolkits

SRI

http://www-speech.sri.com/projects/srilm/

CMU

<u>http://www.speech.cs.cmu.edu/SLM_info.html</u>