

Admin

- Readings
- make sure you're keeping up with them
- Assignment 1 due Sunday

Probability questions

- Monty hallshould you switch?
- The Coin game
 - □ HHH vs. THT
 - This is sort of like the language modeling task we'll look at today

Independence

- □ Two variables are independent if they do not effect each other
- □ For two independent variables, knowing the value of one does not change the probability distribution of the other variable
 - $\hfill\square$ the result of the toss of a coin is independent of a roll of a dice
 - $\hfill\square$ price of tea in England is independent of the whether or not you get an A in NLP

Independent or Dependent?

- Catching a cold and enjoying reading books
- Miles per gallon and driving habits
- □ Height and longevity of life

Conditional Independence Dependent events can become independent given certain other events Examples, height and length of life "correlation" studies size of your lawn and length of life I USED TO THINK THEN I TOOK A SOUNDS LIKE THE CORRELATION IMPLIED STATISTICS CLASS. NOW I DON'T. CLASS HELPED.

Ç

l WELL, MAYBE

Q

2

http://xkcd.com/552/

Conditional Independence

- Dependent events can become independent given certain other events
- Examples,
 - height and length of life
 - "correlation" studies
 size of your lawn and length of life
- □ If A, B are conditionally independent of C $A \perp B \mid C$
 - P(A,B|C) = P(A|C)P(B|C)
 - □ P(A | B,C) = P(A | C)
 - $\square P(B | A,C) = P(B | C)$
 - □ but $P(A,B) \neq P(A)P(B)$

Assume independence

- Sometimes we will assume two variables are independent (or conditionally independent) even though they're not
- □ Why?
 - Creates a simpler model
 p(X,Y) many more variables than just P(X) and P(Y)
 - May not be able to estimate the more complicated model

Language modeling

- What does natural language look like?
- □ More specifically in NLP, probabilistic model
- Two related questions:
 - p(sentence)
 - p("I like to eat pizza")
 - p("pizza like l eat")
 - p(word | previous words)
 - p("pizza" | "I like to eat")
 - p("garbage" | "I like to eat")
 - p("run" | "I like to eat")

Language modeling

- How might these models be useful?
 - Language generation tasks
 - machine translation
 summarization
 - simplification
 - speech recognition
 - speech recogning
 ...
 - Text correction
 - spelling correction
 - grammar correction

Langu	age modelinç	9	
l think	today is a good day t	o be me	
Google	"I think today is a good day	to be me"	Search
Web Show op	itions bund for "I think today is a goo	d day to be me".	
Language m	nodeling is about dealir	ıg with data sparsity	

Language modeling

- A language model is really a probabilistic explanation of how the sentence was generated
- 🗆 Key idea:
 - $\hfill\square$ break this generation process into smaller steps
 - estimate the probabilities of these smaller steps
 - the overall probability is the combined product of the steps

Language modeling

Two approaches:

- 🛯 n-gram language modeling
 - Start at the beginning of the sentence
 - Generate one word at a time based on the previous words

syntax-based language modeling

- Construct the syntactic tree from the top down
- e.g. context free grammar
- eventually at the leaves, generate the words

Pros/cons?

n-gram	language modelir	ng
l thi	nk today is a good day to be me	
Google	"I think"	Search
Web Show option	Results 1 - 10 of about 564,000,000 for "I t	think". (0.28 seconds)
Google	"today is a good day"	Search
Web Show op	tions Results 1 - 10 of about 10,100,000 fe	or " <u>today</u> is a <u>good day</u> ".
Google	"to be me"	Search
Web EShow op	tions Results 1 - 10 of about 7	70,200,000 for " <u>to be</u> me".

Our friend the chain rule Step 1: decompose the probability P(| think today is a good day to be me) = P(| | <start>) x P(think | 1) x P(today | think) x P(s| | think today) x P(a | think today is a) x ... How can we simplify these?

Assume each word depends only on the previous n-1 words (e.g. trigram: three words total)

- $P(is | I think today) \approx P(is | think today)$
- $P(a \mid I \text{ think today is}) \approx P(a \mid \text{ today is})$

 $P(good | I think today is a) \approx P(good | is a)$

Estimating probabilities

- □ How do we find probabilities? P(is | think today)
- Get real text, and start counting (MLE)!
 - P(is | think today) = count(think today is) count(think today)

Estimating from a corpus

- 1. Go through all sentences and count trigrams and bigrams
 - $\hfill\square$ usually you store these in some kind of data structure
- 2. Now, go through all of the trigrams and use the count and the bigram count to calculate MLE probabilities
 - do we need to worry about divide by zero?

Generating examples
<start> <start> Zebras</start></start>
repeat!
p(are <start> Zebras)</start>
p(eat <start> Zebras)</start>
p(think <start> Zebras)</start>
p(and <start> Zebras)</start>
:
p(mostly <start> Zebras)</start>

Generation examples

🗆 Unigram

are were that ères mammal naturally built describes jazz territory heteromyids film tenor prime live founding must on was feet negro legal gate in on beside . provincial san j stephenson simply spaces stretched performance double-entry grove replacing station across to burma . repairing ères capital about double reached onnibus el time believed what hotels parameter jurisprudence words syndrome to ères profonity is administrators ères offices hilarius institutionalized remains writer royalty dennis , ères tyson , and objective , instructions seem timekeeper has ères valley ères " magnitudes for love on ères from allakaket , ana central enlightened . to , ères is belongs fame they the corrected j . on in pressure %NUMBER% her flavored ères deragatory is won metcard indirectly of crop duty learn northbound ères ères dancing similarity ères named ères berkeley . . off-scale overtime . each mansfield stripes dânu traffic ossetic and at alpha popularity town

Generation examples

Bigrams

the wikipedia county , mexico .

maurice ravel . it is require that is sparta , where functions . most widely admired .

halogens chamiali cast jason against test site .

Generation examples

Trigrams

is widespread in north africa in june %NUMBER%%NUMBER% units were built by with .

jewish video spiritual are considered ircd , this season was an extratropical cyclone .

the british railways 's strong and a spot .

Evaluation

- $\hfill\square$ We can train a language model on some data
- □ How can we tell how well we're doing?

for example

- bigrams vs. trigrams
- 100K sentence corpus vs. 100M
- **...**

Evaluation

- □ A very good option: extrinsic evaluation
- If you're going to be using it for machine translation
 build a system with each language model
- compare the two based on their approach for machine translation
- Sometimes we don't know the application
- Can be time consuming
- Granularity of results

E١	valuation	
	A good model actual sentence	should do a good job of predicting es
		Test sentences
	model 1	probability
		compare
	model 2	probability

Perplexity is a related measure that is commonly used and is 1 over this value and often done in log space

$$\frac{1}{\prod_{i=1}^{n} P(w_i \mid w_{1...i-1})} \approx -\frac{\sum_{i=1}^{n} \log p(w_i \mid w_{1...i-1})}{n}$$

Another view of perplexity

Weighted average branching factor

- number of possible next words that can follow a word or phrase
- measure of the complexity/uncertainty of text (as viewed from the language models perspective)

Smoothing

ⁿ

What if our test set contains the following sentence, but one of the trigrams never occurred in our training data?

If any of these has never been

seen before, prob = 0!

P(I think today is a good day to be me) =
P(I | <start> <start>) x

P(think | <start> I) x

P(today | 1 think) x

- P(is | think today) x
- P(a | today is) x
- P(good | is a) x
- ...

A better approach

- □ p(z | x y) = ?
- Suppose our training data includes
 ... x y a ..
 ... x y d ...
 ... x y d ...
- but never: xyz

$$p(z | x y) = 0/3?$$

$$\Box \text{ Is this ok?}$$

□ Intuitively, how should we fix these?

Smoothing the estimates

Basic idea:

p(a | x y) = 1/3? reducep(d | x y) = 2/3? reducep(z | x y) = 0/3? increase

- Discount the positive counts somewhat
- Reallocate that probability to the zeroes
- Remember, it needs to stay a probability distribution

```
Other situations

p(z | x y) = ?

Suppose our training data includes

... x y a ... (100 times)

... x y d ... (100 times)

but never: x y z

Suppose our training data includes

... x y d ...

... x y d ...
```

Smoothing the estimates	Smoc	othing	the	estimates
-------------------------	------	--------	-----	-----------

□ Should we conclude

- p(a | xy) = 1/3? *reduce* p(d | xy) = 2/3? *reduce* p(z | xy) = 0/3? *increase*
- Readjusting the estimate is particularly important if:
 the denominator is small ...
 1/3 probably too high, 100/300 probably about right
 - If a probably rooming, roop see probably about right
 numerator is small ...
 - 1/300 probably too high, 100/300 probably about right

Add-one	(Lapla	cian) sn	noothi	ng
хуа	1	1/3	2	2/29
xyb	0	0/3	1	1/29
хус	0	0/3	1	1/29
xyd	2	2/3	3	3/29
xye	0	0/3	1	1/29
xyz	0	0/3	1	1/29
Total xy	3	3/3	29	29/29

Add-one	(Lap	lacian)	smooth	ing
300 observations	instead a	of 3 – better	data, less sm	noothing
xya	100	100/300	101	101/326
xyb	0	0/300	1	1/326
хус	0	0/300	1	1/326
xyd	200	200/300	201	201/326
xye	0	0/300	1	1/326
xyz	0	0/300	1	1/326
Total xy	300	300/300	326	326/326

Add-o	ne (Lap	lacian	smoot	hing
What happe	ns if we're n	ow consider	ing 20,000	word types?
хуа	1	1/3	2	2/29
xyb	0	0/3	1	1/29
хус	0	0/3	1	1/29
xyd	2	2/3	3	3/29
xye	0	0/3	1	1/29
xyz	0	0/3	1	1/29
Total xy	3	3/3	29	29/29

Add-one (l	.aplaci	ian) sm	oothir	ig
20000 word type	es, not 20	6 letters		
see the abacus	1	1/3	2	2/20003
see the abbot	0	0/3	1	1/20003
see the abduct	0	0/3	1	1/20003
see the above	2	2/3	3	3/20003
see the Abram	0	0/3	1	1/20003
see the zygote	0	0/3	1	1/20003
Total	3	3/3	20003	20003/20003
A	ny proble	m with this	ŝ	

The gener	al smoo	othing	probl	em
			nolificot	lof probability
see the abacus	1	1/3	?	?
see the abbot	0	0/3	?	?
see the abduct	0	0/3	?	?
see the above	2	2/3	?	?
see the Abram	0	0/3	?	?
			?	?
see the zygote	0	0/3	?	?
Total	3	3/3	?	?

Add-lamb	da smo	othing)	
 A large dictionary 	makes nove	el events to	o probab	le.
Instead of adding			•	
This gives much les		•		
	,			
see the abacus	1	1/3	1.01	1.01/203
see the abbot	0	0/3	0.01	0.01/203
see the abduct	0	0/3	0.01	0.01/203
see the above	2	2/3	2.01	2.01/203
see the Abram	0	0/3	0.01	0.01/203
			0.01	0.01/203
see the zygote	0	0/3	0.01	0.01/203
Total	3	3/3	203	
'	,			

Add-lamb	da smo	othinç	9	
low should we p	ick lambdo	şč		
see the abacus	1	1/3	1.01	1.01/203
see the abbot	0	0/3	0.01	0.01/203
see the abduct	0	0/3	0.01	0.01/203
see the above	2	2/3	2.01	2.01/203
see the Abram	0	0/3	0.01	0.01/203
			0.01	0.01/203
see the zygote	0	0/3	0.01	0.01/203
Total	3	3/3	203	

Concerns

- \square 20% may not be enough to reliably determine λ
- We're maximizing lambda for only 80% of our data (will not be the same as the optimal for 100%)
- □ We're losing 20% of our data for calculating counts

Ideas?

