

- Read article for discussion on Thursday
- Assignment advice
 - test individual components of your regex first, then put them all together
 - write test cases

-			CS				
Number of times the word				Number of times the word			
'government'	7	13	18	'innovation'	2	3	9
was used in Obama's State of the Union addresses.	2009	2010	2011	was used in Obama's State of the Union addresses.	2009	2010	2011
				Number of times the word			
Number of times the word				'win'	1	2	9
'dream'	2	3	12	was used in Obama's State	2009	2010	2011
of the Union addresses.	2009	2010	2011	Number of times the word	2000	2010	2011
Number of times the word				'Afghan(istan)'	2	5	8
'education'	14	5	11	was used in Obama's State of the Union addresses.	2009	2010	2011
was used in Obama's State of the Union addresses.	2009	2010	2011	Number of times the word			
Number of times the word				'Internet'	0	0	6
'industry'	5	1	9	was used in Obama's State of the Union addresses	2009	2010	2011
was used in Obama's State		2010	2011				

Basic Probability Theory: terminology

An event is a subset of the sample space

Dice rolls

- {2}
- {3, 6}
- even = {2, 4, 6}
- □ odd = {1, 3, 5}

NLP

- a particular word/part of speech occurring in a sentence
- a particular topic discussed (politics, sports)
- sentence with a parasitic gap
- pick your favorite phenomena...

Events

- We're interested in probabilities of events
 - p({2})
 - □ p(even)
 - □ p(odd)
 - p(parasitic gap)p(word)

Random variables A random variable is a mapping from the sample space to a number (think events) It represents all the possible values of something we want to

- If represents all the possible values of something we want to measure in an experiment
- For example, random variable, X, could be the number of heads for a coin

Random variables

- We can then talk about the probability of the different values of a random variable
- The definition of probabilities over all of the possible values of a random variable defines a probability distribution

1 1	1	0

J	oint o	distribu	utio	n					
v D P	 We can also talk about probability distributions over multiple variables P(X,Y) probability of X and Y a distribution over the cross product of possible values NLPPass P(NLPPass) 								
			e cross p	product of possible value	25				
			e cross p	NLPPass AND EngPass	P(NLPPass,				
	NLPPass	P(NLPPass)	e cross p						
	NLPPass true false	P(NLPPass) 0.89 0.11	eross i	NLPPass AND EngPass	P(NLPPass, EngPass)				
	NLPPass true	P(NLPPass) 0.89	e cross p	NLPPass AND EngPass	P(NLPPass, EngPass) .88				
	NLPPass true false	P(NLPPass) 0.89 0.11	e cross p	NLPPass AND EngPass true, true true, false	P(NLPPass, EngPass) .88 .01				

Joint distribution

- Still a probability distribution all values between 0 and 1, inclusive
 - all values sum to 1
- All questions/probabilities of the two variables can be calculated from the joint distribution

ILPPass AND EngPass	P(NLPPass, EngPass)	
ue, true	.88	What is P(ENGPass)?
ue, false	.01	
alse, true	.04	
alse, false	.07	

Conditional probability

- As we learn more information, we can update our probability distribution
- P(X | Y) models this (read "probability of X given Y")
 - What is the probability of a heads given that both sides of the coin are heads?
 - What is the probability the document is about politics, given that it contains the word "Clinton"?
 - What is the probability of the word "banana" given that the sentence also contains the word "split"?
- Notice that it is still a distribution over the values of X

Properties of probabilities

 $\square P(\neg E) = 1 - P(E)$

□ More generally:

Given events $E = e_1, e_2, ..., e_n$

$$p(e_i) = 1 - \sum_{\substack{i=1:n, i \neq i}} p(e_j)$$

 $\square P(E1, E2) \le P(E1)$

Chain rule

$$\begin{split} p(X,Y,Z) &= P(X \mid Y,Z) P(Y,Z) \\ p(X,Y,Z) &= P(X,Y \mid Z) P(Z) \\ p(X,Y,Z) &= P(X \mid Y,Z) P(Y \mid Z) P(Z) \\ p(X,Y,Z) &= P(Y,Z \mid X) P(X) \end{split}$$

$$p(X_1, X_2, ..., X_n) = ?$$

Applications of the chain rule
• We saw that we could calculate the individual prior
probabilities using the joint distribution

$$p(x) = \sum_{y \in Y} p(x, y)$$
• What if we don't have the joint distribution, but do have
conditional probability information:
• P(Y)
• P(X | Y)

$$p(x) = \sum_{y \in Y} p(y)p(x | y)$$

8

Parasitic gaps

http://literalminded.wordpress.com/2009/02/10/ dougs-parasitic-gap/

Frequency of parasitic gaps

- Parasitic gaps occur on average in 1/100,000 sentences
- □ Problem:
 - Joe Linguist has developed a complicated set of regular expressions to try and identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005. Suppose we run it on a sentence and the algorithm says it is a parasitic gap, what is the probability it actually is?

Prob of parasitic gaps

Joe Linguist has developed a complicated set of regular expressions to try and identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005. Suppose we run it on a sentence and the algorithm says it is a parasitic gap, what is the probability it actually is?

> G = gap T = test positive

What question do we want to ask?

Prob of parasitic gaps

Joe Linguist has developed a complicated set of regular expressions to try and identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005. Suppose we run it on a sentence and the algorithm says it is a parasitic gap, what is the probability it actually is?

> G = gap T = test positive

p(g | t) = ?

Estimating probabilities

What is the probability of "the" occurring in a sentence?

We don't know!

We can estimate that based on data, though:

number of sentences with "the"

total number of sentences

Maximum likelihood estimation

- Intuitive
- Sets the probabilities so as to maximize the probability of the training data

Problems?

- Amount of data
- particularly problematic for rare events
- Is our training data representative

Back to parasitic gaps

- □ Say the actual probability is 1/100,000
- We don't know this, though, so we're estimating it from a small data set of 10K sentences
- What is the probability that, by chance, we have a parasitic gap sentence in our sample?

Back to parasitic gaps

- □ p(not_parasitic) = 0.99999
- $\hfill p(not_parasitic)^{10000} \approx 0.905$ is the probability of us NOT finding one
- So, probability of us finding one is ~10%, in which case we would incorrectly assume that the probability is 1/10,000 (10 times too large)
- Remember Zipf's law from last time... NLP is all about rare events!