- B

g —== I

: - :/"7/{‘ "
% /—//"1 - Sirkgss

My desire to be well-informed is corrently
at odds with my destce fo remain sane,

Informed Search
CS457

David Kauchak

Fall 2011

Some material used from :
Sara Owsley Sood and others

Admin

+ Q3
— mean: 26.4
— median: 27
 Final projects
— proposals looked pretty good
— start working

« plan out exactly what you want to accomplish
* make sure you have all the data, etc. that you need

« status 1 still technically due 11/24, but can turn in as late as
11/27

« status 2 due 12/2 (one day later)

Search algorithms

+ Last time: search problem formulation
— state
— transitions (actions)
— initial state
— goal state
— costs
+ Now we want to find the solution!
» Use search techniques
— Start at the initial state and search for a goal state
* What are candidate search techniques?
- BFS
- DFS
— Uniform-cost search
— Depth limited DFS
— Depth-first iterative deepening

Finding the path: Tree search algorithms

» Basic idea:
— keep a set of nodes to visit next (frontier)
— pick a node from this set
— check if it's the goal state
— if not, expand out adjacent nodes and repeat

def treeSearch(start):
add start to the frontier
while frontier isn’t empty:
get the next node from the frontier
if node contains goal state:
return solution
else:

expand node and add resulting nodes to frontier

BFS and DFS

How do we get BFS and DFS from this?

def treeSearch(start):
add start to the frontier
while frontier isn’t empty:
get the next node from the frontier
if node contains goal state:
return solution
else:

expand node and add resulting nodes to frontier

Breadth-first search

» Expand shallowest unexpanded node

* Nodes are expanded a level at a time (i.e. all nodes at a
given depth)

* Implementation:
— frontier is a FIFO (queue), i.e., new successors go at end

Depth-first search

» Expand deepest unexpanded node

* Implementation:
— frontier = LIFO (stack), i.e., put successors at front

frontier

Search algorithm properties

» Time (using Big-O)
» Space (using Big-O)

* Complete
— If a solution exists, will we find it?
* Optimal
— If we return a solution, will it be the best/optimal
solution

» A divergence from data structures
— we generally won’t use V and E to define time and
space. Why?
« Often V and E are infinite (or very large relative to solution)!

« Instead, we often use the branching factor (b) and depth of
solution (d)

Activity

» Analyze DFS and BFS according to:
—time,
— space,
— completeness
— optimality
(for time and space, analyze in terms of b, d

and m (max depth); for complete and optimal -
simply YES or NO)

— Which strategy would you use and why?
* Brainstorm improvements to DFS and BFS

BFS

 Time: O(bd)
+ Space: O(bd)
» Complete = YES

» Optimal = YES if action costs are fixed,
NO otherwise

Time and Memory requirements for BFS

DFS

Depth Nodes Time Memory
2 1100 .11 sec 1MB
4 111,100 11 sec 106 MB
6 107 19 min 10 GB
8 10° 31 hours 1 terabyte
10 10" 129 days 101 terabytes
12 1013 35 years 10 petabytes
14 1015 3,523 years 1 exabyte

BFS with b=10, 10,000 nodes/sec; 10 bytes/node

» Time: O(b™)
» Space: O(bm)

» Complete = YES, if space is finite (and no
circular paths), NO otherwise

» Optimal = NO

Problems with BFS and DFS

* BFS
—doesn’t take into account costs
—memory! ®

* DFS
— doesn’t take into account costs
— not optimal
— can’t handle infinite spaces
—loops

Uniform-cost search

« Expand unexpanded node with the smallest path
cost, g(x)

* Implementation:
— frontier = priority queue ordered by path cost
— similar to Dijkstra’s algorithm

» Equivalent to breadth-first if step costs all equal

Uniform-cost search

» Time? and Space?
— dependent on the costs and optimal path cost, so
cannot be represented in terms of b and d

— Space will still be expensive (e.g. take uniform costs)
» Complete?

— YES, assuming costs > 0
* Optimal?

— Yes, assuming costs > 0

» This helped us tackle the issue of costs, but still
going to be expensive from a memory
standpoint!

Ideas?

Can we combined the optimality and
completeness of BFS with the memory of
DFS?

@ g =+

>O ©® O® O

Depth limited DFS

Ideas?

« DFS, but with a depth limit L specified
— nodes at depth L are treated as if they have no successors
— we only search down to depth L

e Time?
— O(b"L)

* Space?
— O(bL)

* Complete?
— No, if solution is longer than L

* Optimal
— No, for same reasons DFS isn’t

Iterative deepening search

Iterative deepening search L =0

For depth 0, 1,, =
run depth limited DFS
if solution found, return result

* Blends the benefits of BFS and DFS
— searches in a similar order to BFS
— but has the memory requirements of DFS

+ Will find the solution when L is the depth of
the shallowest goal

Limit=0 »Q [d

Iterative deepening search L =1

Iterative deepening search L =2

e
s

Iterative deepening search L =3

R ST ST
LA
0.7 0 £ S0

Time?
e L=0:1
*L=1:1+Db

*L=2:1+b+Db?

e L=3:1+b+b%2+b3

eL=d: 1+b+b2+b3+ .. +Dbd

* Overall:
—d(1) + (d-1)b + (d-2)b? + (d-3)b3 + ... + bd
_O(bd)
— the cost of the repeat of the lower levels is

ciitheiimed hyv tha crnet at tha hinhaet loual

Properties of iterative deepening search

» Space?
— O(bd)
* Complete?
—Yes
* Optimal?
—Yes, if step cost = 1

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time o™y oplcdy oy O®) O(b?)
Space o@dHYy o@BICd)y O@®m) O(bl) 0O(bd)
Optimal? Yes Yes No No Yes

Uninformed search strategies

« Uninformed search strategies use only the
information available in the problem definition
— Breadth-first search
— Uniform-cost search
— Depth-first search
— Depth-limited search
— Iterative deepening search

Repeated states

What is the impact of repeated states?

113|8 1 8 113|8
4 7‘437‘4 7
6|52 6|52 6|52

def treeSearch(start):
add start to the frontier
while frontier isn’t empty:
get the next node from the frontier
if node contains goal state:
return solution
else:

expand node and add resulting nodes to frontier

Can make problems seem harder

What will this
look like for
treeSearch?

—

Solution?

Graph search

» Keep track of nodes that have been visited (explored)

* Only add nodes to the frontier if their stafe has not been
seen before

def graphSearch(start):
add start to the frontier
set explored to empty
while frontier isn’t empty:
get the next node from the frontier
if node contains goal state:
return solution
else:
add node to explored set
expand node and add resulting nodes to frontier,
if they are not in frontier or explored

Graph search implications?

« We' re keeping track of all of the states that we've
previously seen

« For problems with lots of repeated states, this is a huge
time savings

* The tradeoff is that we blow-up the memory usage
— Space graphDFS?

+ O(bm)

» Something to think about, but in practice, we often just

use the tree approach

8-puzzle revisited

» The average depth of a solution for an 8-puzzle is 22
moves

» What do you think the average branching factor is?
— ~3 (center square has 4 options, corners have 2 and edges have

3)

» An exhaustive search would require ~322 = 3.1 x 1010
states
— BFS: 10 terabytes of memory
— DFS: 8 hours (assuming one million nodes/second)
— IDS: ~9 hours

« Can we do better? 11318

from: Middlebury to:Montpelier

What would the search algorithms do?

9 L et
Restors o Lk e porc o
ot v NS S e
B e w o
Kefsesie 1 s b
Witpsieis ok
Au Sable. | Buringion # State Forest
0 I Sl e
Taylor Pond / ‘Burlington” il .
Uckirae 3 Shelbune, Richmond oM
Mot @ / SElrm cuen
by =
g Digihisen si
R Moretown' e
1/ Planfed 4
® y Vgt
Fayion
o JFemsbugh giakanoro o Belin Barre
gh Peaks. 5 (l Vergennes Waitseld
\ Neg tava m. Warren Wilamstown
S non -
Yrconon Rotuay shogion
Port Henry ’
3 Middlebur Brookfield. Co
+ 1 .
)
e ot foon corum
e -
Wild Forest \ Salisbury Randoph
K P .
Hoffman 38".'::* Toonderdh e ‘Svafiord
" e ey il
+ _- Orwell Brandon s
Praen Y Suconie -~
{ Chitenden i -
et naraon | et il y
4 Glington miet Hanfor
estHaven Kiing Hanford
@ catan A

from: Middlebury to:Montpelier

DFS

L L s e
Redtors pef lake e o Greenx
Gowdsmith Champiain w e
B s e -
Kefsesie 1 Essex Jeo
Mt Mansfield Hardwick
e | Burlington # State Forest
* uh, iliston Woodbury
Taylor Pond) Buringion W1 .
McKenzie = ‘Shelbume, Richmond CC Putnam
owidn @ / State Forest Colas
Hinesburg. @
. lgghssee cie
Lake Placid. owpee
) oreon XA,
@ y Mantpelier
Fayion
. wesgorfl U Starkaboro " Beiin Barre
el | L veomes wason |
; e L ——
v Vrcoson Rotouy e
b ’\ Brookfield Co
A * b I esea
/anderwhacker Pond. {eddpon
oune Randooh
k) & o
o L shoreham o) Tunbridge
Hoffman) R Strafford
0 Noteh M) Betnel
N € conon_J-bokn ol
Praten \ ! Susoridge raron
‘/s Chittenden Barmard. Norw.
oo tnmraon | et - :
) Glington ‘omiret fartford |
L, g artod)

Cateton

from: Middlebury to:Montpelier

BFS and IDS

from: Middlebury to:Montpelier

We'd like to bias search towards the actual solution

> e - 1 e ?
=L st Hyde Park reent v 9 esford (yde Park reem H
G peny @ oo sty P woleor
o i cissmt nampian .
Coldnbtr Undaa e Coltnbstr Undaa e
Keesewle || Essex Jericho Rt Manateld ok Keesete | Essex Jericho ok
%, sane | Burington # State Forest - | Burington
o Shun Wosdbry 0 Sk Soun_ Woddbry
Taylor Pond Burington SN S Taylor Pond ,1 Buringtan 1SN
‘Shelburne, Richmond ©C Putnam ':;’f:‘;'.": ‘Shelbume, Richmongy CC Putnar
State Forest Calais v (ate Forest
\ sty reo) 3
|Chaote T |chaone D iseser et
Lake Piacid Montpeber Loke Pracio \ / Montpe
Morsoun e ao R) o .
@ Moripeier (@) y Noripe!
/ Fermsburgh e e
tin Barre il "oh Starksbo Beiiin Barre
3 o5 £ Wesgtl Vergemes. Waitsfield
anPeske Norotala an Pesks W Warsiod g
Wilkamstown e by Warren mstown
o 2 oo -
—ITD g Jrasson ey =
Port Henry ML
Brookfeld o g 5 . Bropkfeld o
. . Chonen
e Hanthond
Vountain o Nountain el
ia . RS Wia Forsst Reoramon 1 5000 o
Hoffiman | Sehroon ‘Swafiord £ Hoffiman | Sehroon % R ‘Swafford
s e e s e Teonsela aie
. Rovaton . € ohn Do Rovaton
Pharaoh - Sharon oy N\ Stockbridge Sharon
trés Sy T) s
Bamard Now { Chitenden Bamard Now
/ - y) Benton vipmwaan | y
Kiingion Pomfet agord) Y et o Kiington Pomfet agorg)
@ B < w. (Castieton. B 2

Informed search

» Order the frontier based on some knowledge of the world
that estimates how “good” a node is
— f(n) is called an evaluation function
» Best-first search
— rank the frontier based on f(n)
— take the most desirable state in the frontier first
— different search depending on how we define f(n)

def treeSearch(start):
add start to the frontier
while frontier isn’t empty:
get the next node from the frontier
if node contains goal state:
return solution
else:

expand node and add resulting nodes to frontier

Heuristic

Merri 's Online Dictit Yy
Heuristic (pron. \hyu- "ris-tik\): adj. [from Greek heuriskein to
discover.] involving or serving as an aid to learning, discovery,
or problem-solving by experimental and especially trial-and-
error methods
The Free On-line Dictionary of Computing (15Feb98)
heuristic 1. <programming> A rule of thumb, simplification or
educated guess that reduces or limits the search for solutions
in domains that are difficult and poorly understood. Unlike
algorithms, heuristics do not guarantee feasible solutions and
are often used with no theoretical guarantee. 2. <algorithm>
approximation algorithm.

Heuristic function: h(n)

« An estimate of how close the node is to a goal
» Uses domain-specific knowledge

* Examples
— Map path finding?
« straight-line distance from the node to the goal (“as the crow flies”)
— 8-puzzle?
» how many tiles are out of place
— Missionaries and cannibals?
« number of people on the starting bank

Greedy best-first search

* f(n) =h(n)
— rank nodes by how close we think they are to the goal

Straight-line distance
to Bucharest
Arad 366
Bucharest
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
99 Fagaras Glorgin g
118 Hirsova 151
Iasi 226
Lugoj 204
Mehadia 21
Neamt 234
Oradea 380
Pitesti 98
Hirsova | Rimnicu Vileea 193
8 | Sibiu 253
Timisoara 329
b | Urziceni 50
corie | Vastui 199
o curgiu Zerind e

Arad to Bucharest

10

Greedy best-first search

366

P —
Py

d 366
‘Bucharest 0
iova 160
Dobreta 2w
Eforic ol
Fagaras 178
Giurgiu
Hirsova 151
si 26
Lugoj 244
Mehadia 241
Neamt 2
Oradea 380
Pitesti 9%
Rimnicu Vilcea 193
si 253
Timisoara 39
Urzicer 50
Vaslul 199
Zerind a7

Greedy best-first search

PrT—.
b e

d 366
Bucharest o
raiova 160
Dobreta 202
Eforic isi
‘agaras 178
Giurgiu
Hirsova 151
Insi 26
ugoj 244
Mehadia 2
Neamt s
Oradea 380
Pitesti
Rimnicu Vilcea 193
i 25
Timisoara 32
Urziceni 0
Vastui 199
Zerind 74

Greedy best-first search

Greedy best-first search

L5 o

Straghtine disance
o Bucharest

o 306
Bucharest o
Craio 16
Do 20
Eforie isi
Fogaras s
Girgin i
Hirson 5
Ins 26
Lugoj 2
Mehadia 2
Neamt e
radea 30
i]
Rimnicu Vilcea 103
3 %
Timboars 320
Urricent
Vst 199
Zerind 4

Straight-lie distance
to Bucharest

11

Problems with greedy best-first search

Problems with greedy best-first search

» Time?
— O(b™) — but can be much faster
* Space

— O(b™) — have to keep them in memory to rank
* Complete?

» Complete?
— Graph search, yes
— Tree search, no

Straight-line distance
rest

to Buchare
Arad 366
Bucharest 0
75 Craiova 160
Dobreta 242
Arad 14 Eforie 161
Fagaras 178
] Giurgiu 7
18 Hirsova 151
Tasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pit 98
QHisova pimnicu Vileea 103
Timisoara 329
by Urziceni 50
ciorie Vaslui 199
d Giurgiu Zerind 374

Problems with greedy best-first search

Problems with greedy best-first search

* Complete?
— Graph search, yes
— Tree search, no

Straight-line distance
ucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 202
Eforie 161
Fagaras 178
Giurgin 7
Hirsova 151
Tasi 226
Lugoj 244
chadia 241
Neamt 2
Oradea 380
ti 9%
Rimnicu Vilcea 193
Sibiu
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

* Optimal?

12

Problems with greedy best-first search

A* search

* Optimal?
—no, as we just saw in the map example

Sometimes
it' s too greedy

What is the problem?

* ldea:
—don’ t expand paths that are already
expensive
— take into account the path cost!
* f(n) = g(n) + h(n)
—g(n) is the path cost so far
— h(n) is our estimate of the cost to the goal
+ f(n) is our estimate of the total path cost to
the goal through n

A* search

A* search

>

366=0+366

13

A* search

393=140+253 447=118+329 449=75+374

P —
by

d 366
‘Bucharest 0
iova 160
Dobreta 212
Eforic ol
Fagaras 178
Giurgiu n
Hirsova 151
Insi 26
Lugoj 4
Mehadia 241
Neamt 2
Oradea 380
testi 9%
Rimnicu Vilcea 193
Sibiu 253
Timisoara 39
eni 50
Vaslul 199
ind a7

447=118+329 449=75+374

PrT—.
b e

d 366
Bucharest o
Craiova 160
Dobreta 202
Eforic isi
Fagaras 178
Giurgiu 7
Hirsova 151
asi 26
Lugoj 24
Mehadia 2
Neamt s
Oradea 380
Pitesti
Rimnicu Vilcea 193
Sibiu 25
Timisoara 32
riceni 0
Vastui 199
rind 74

A* search

447=118+329

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253
oy e
Ara

[Oracea

ra 3
Bucharest 0

A* search

449=75+374

526=366+160 417=317+100 553=300+253

Straight-lie distance
t0 Bucharest

e
Amd "
B
Cam”
o
s Eioe it
s 1
R faguras 7
by ? Hirsova 151
™ A
) fr
frr
fo b
Cmim
Hirsova. 0o bl
Rimlea Vs 133
o
[
L et n
b, Ve 5
Yerna 4

14

A* search

Arad

646=280+366 671=291+380

591=338+253 450=450+0 526=366+160 553=300+253

B G&
418=418+0 615=455+160 607=414+193

Admissible heuristics

447=118+329 449=75+374

* A heuristic function is admissible if it never
overestimates
— if h*(n) is the actual distance to the goal
— h(n) £h*(n)

* An admissible heuristic is optimistic (it always
thinks the goal is closer than it actually is)

* |s the straight-line distance admissible?

@'ﬁnhn

closest to the actual “price”
without going over

A* properties

* Time
— depends on heuristic, but generally exponential
* Space
— exponential (have to keep all the nodes in memory/
frontier)

* Complete
- YES
* Optimal
— YES, if the heuristic is admissible
— Why?
« If we could overestimate, then we could find (that is remove

from the queue) a goal node that was suboptimal because
our estimate for the optimal goal was too large

A point of technicality

» Technically if the heuristic isn't admissible, then
the search algorithm that uses f(n) = g(n) + h(n)
is call “Algorithm A”

« A* algorithm requires that the heuristic is
admissible

+ That said, you’ Il often hear the later referred to
as A*

« Algorithm A is not optimal

15

Admissible heuristics

Admissible heuristics

* 8-puzzle
—h4(n) = number of misplaced tiles?
— hy(n) = manhattan distance?

» 8-puzzle
—h4(n) = number of misplaced tiles?
— hy(n) = manhattan distance?

h =7 h =8 admissible? h =7 h =8 which is better?
h, =12 h,=8 h, =12 h,=8
1138 112(5 12 1138 112(5 12
4 7 4 8 314 1|5 4 7 4 8 314 1|5
6| 5| 2 3167 6|78 6| 5| 2 3167 6|7
goal goal
Dominance Dominance
« Given two admissible heuristic functions . hz(n) dominates h1(n)
— if hy(n) 2 hy(n) for all n
— then hy(n) dominates hy(n) e B CSD) aih2)
* A dominant function is always better. Why? 2 10 6 6
— It always give a better (i.e. closer) estimate to the 4 112 13 12
actual path cost, without going over 6 680 20 18
* What about? 8 6384 %9 %
)) 10 47127 93 39
— hy(n) = number of misplaced tiles 12 3644035 297 73
— h,(n) = manhattan distance 14 539 13
16 1301 211
18 3056 363
20 7276 676

average nodes expanded for 8-puzzle problems

16

Combining heuristics

+ Sometimes, we have multiple admissible
heuristics, but none dominates

* What then?
— We can take the max of all the heuristics!

* Why?
— Since they’re all admissible, we know none

overestimate

— taking the max gives us a closer/better estimate
— overall, a better heuristic function

Relaxed problems

+ A problem with fewer restrictions on the actions is
called a relaxed problem

» The cost of an optimal solution to a relaxed problem
is an admissible heuristic for the original problem

* How might you create a relaxed problem for the 8-
puzzle?
— atile can move anywhere (same as h,(n))

— atile can move to any adjacent square (same as hy(n))

Creating Heuristics

8-Puzzle Missionaries and Cannibals R%Tig:se 5
LIl M{\ﬂz iz $998¢ 11
= ionay L1

-] I
GIE] G (e s&s» 1
Water Jug Problem Route Planning

FRANCE %,

17

