
1 

Informed Search 
CS457 

David Kauchak 
Fall 2011 

Some material used from : 
Sara Owsley Sood and others 

Admin 
•  Q3 

–  mean: 26.4 
–  median: 27 

•  Final projects 
–  proposals looked pretty good 
–  start working 

•  plan out exactly what you want to accomplish 
•  make sure you have all the data, etc. that you need 
•  status 1 still technically due 11/24, but can turn in as late as 

11/27 
•  status 2 due 12/2 (one day later) 

Search algorithms 

•  Last time: search problem formulation 
–  state 
–  transitions (actions) 
–  initial state 
–  goal state 
–  costs 

•  Now we want to find the solution! 
•  Use search techniques 

–  Start at the initial state and search for a goal state 
•  What are candidate search techniques? 

–  BFS 
–  DFS 
–  Uniform-cost search 
–  Depth limited DFS 
–  Depth-first iterative deepening 

Finding the path: Tree search algorithms 

•  Basic idea: 
–  keep a set of nodes to visit next (frontier) 
–  pick a node from this set 
–  check if it’s the goal state 
–  if not, expand out adjacent nodes and repeat 

 

def treeSearch(start): 
  add start to the frontier  
  while frontier isn’t empty: 
    get the next node from the frontier 

  if node contains goal state: 
  return solution   
 else: 
  expand node and add resulting nodes to frontier 



2 

BFS and DFS 

def treeSearch(start): 
  add start to the frontier  
  while frontier isn’t empty: 
    get the next node from the frontier 

  if node contains goal state: 
  return solution   
 else: 
  expand node and add resulting nodes to frontier 

How do we get BFS and DFS from this? 

Breadth-first search 

•  Expand shallowest unexpanded node 
•  Nodes are expanded a level at a time (i.e. all nodes at a 

given depth) 

•  Implementation: 
–  frontier is a FIFO (queue), i.e., new successors go at end 

frontier 

Depth-first search 
•  Expand deepest unexpanded node 

•  Implementation: 
–  frontier = LIFO (stack), i.e., put successors at front 

 

frontier 

Search algorithm properties 

•  Time (using Big-O) 
•  Space (using Big-O) 
•  Complete 

–  If a solution exists, will we find it? 
•  Optimal 

–  If we return a solution, will it be the best/optimal 
solution 

•  A divergence from data structures 
–  we generally won’t use V and E to define time and 

space.  Why? 
•  Often V and E are infinite (or very large relative to solution)! 
•  Instead, we often use the branching factor (b) and depth of 

solution (d) 



3 

Activity 

•  Analyze DFS and BFS according to:  
–  time, 
– space, 
– completeness 
–   optimality 
 (for time and space, analyze in terms of b, d 
and m (max depth); for complete and optimal - 
simply YES or NO) 

– Which strategy would you use and why? 
•  Brainstorm improvements to DFS and BFS 

BFS 

•  Time: O(bd) 

•  Space: O(bd) 

•  Complete = YES 

•  Optimal = YES if action costs are fixed, 
NO otherwise   

Time and Memory requirements for BFS 

Depth Nodes Time Memory 

2 1100 .11 sec 1 MB 
4 111,100 11 sec 106 MB 
6 107 19 min 10 GB 
8 109 31 hours 1 terabyte 

10 1011 129 days 101 terabytes 
12 1013 35 years 10 petabytes 

14 1015 3,523 years 1 exabyte 

BFS with b=10, 10,000 nodes/sec; 10 bytes/node 

DFS 

•  Time: O(bm) 

•  Space: O(bm) 

•  Complete = YES, if space is finite (and no 
circular paths), NO otherwise 

•  Optimal = NO 



4 

Problems with BFS and DFS 

•  BFS 
– doesn’t take into account costs 
– memory! L 

•  DFS 
– doesn’t take into account costs 
– not optimal 
– can’t handle infinite spaces 
–  loops 

Uniform-cost search 
•  Expand unexpanded node with the smallest path 

cost, g(x) 
 
•  Implementation: 

–  frontier = priority queue ordered by path cost 
–  similar to Dijkstra’s algorithm 

•  Equivalent to breadth-first if step costs all equal 

Uniform-cost search 
•  Time? and Space? 

–  dependent on the costs and optimal path cost, so 
cannot be represented in terms of b and d 

–  Space will still be expensive (e.g. take uniform costs) 

•  Complete? 
–  YES, assuming costs > 0 

•  Optimal? 
–  Yes, assuming costs > 0 

•  This helped us tackle the issue of costs, but still 
going to be expensive from a memory 
standpoint! 

Ideas? 

Can we combined the optimality and 
completeness of BFS with the memory of 
DFS? 

+ = 



5 

Depth limited DFS 

•  DFS, but with a depth limit L specified 
–  nodes at depth L are treated as if they have no successors 
–  we only search down to depth L 

•  Time? 
–  O(b^L) 

•  Space? 
–  O(bL) 

•  Complete? 
–  No, if solution is longer than L 

•  Optimal 
–  No, for same reasons DFS isn’t 

Ideas? 

Iterative deepening search 

For depth 0, 1, …., ∞ 
run depth limited DFS 
if solution found, return result 

•  Blends the benefits of BFS and DFS 
–  searches in a similar order to BFS 
–  but has the memory requirements of DFS 

•  Will find the solution when L is the depth of 
the shallowest goal 

Iterative deepening search L =0 



6 

Iterative deepening search L =1 Iterative deepening search L =2 

Iterative deepening search L =3 Time? 

•  L = 0:  1 
•  L = 1:  1 + b 
•  L = 2:  1 + b + b2 
•  L = 3:  1 + b + b2 + b3 
•  … 
•  L = d:  1 + b + b2 + b3 + … + bd 
•  Overall: 

– d(1) + (d-1)b + (d-2)b2 + (d-3)b3 + … + bd 

– O(bd) 
–  the cost of the repeat of the lower levels is 

subsumed by the cost at the highest level  



7 

Properties of iterative deepening search 

•  Space?  
– O(bd) 

•  Complete?  
– Yes 

•  Optimal?  
– Yes, if step cost = 1 

Summary of algorithms 

Uninformed search strategies 
•  Uninformed search strategies use only the 

information available in the problem definition 
–  Breadth-first search 
–  Uniform-cost search 
–  Depth-first search 
–  Depth-limited search 
–  Iterative deepening search 

Repeated states 

def treeSearch(start): 
  add start to the frontier  
  while frontier isn’t empty: 
    get the next node from the frontier 

  if node contains goal state: 
  return solution   
 else: 
  expand node and add resulting nodes to frontier 

What is the impact of repeated states? 

1 

4 

6 5 2 

7 

8 3 1 

4 

6 5 2 

7 

8 3 1 

4 

6 5 2 

7 

8 

3 



8 

Can make problems seem harder 

What will this 
look like for 
treeSearch? 

… 
Solution? 

Graph search 
•  Keep track of nodes that have been visited (explored) 
•  Only add nodes to the frontier if their state has not been 

seen before 

def graphSearch(start): 
  add start to the frontier 
  set explored to empty 
  while frontier isn’t empty: 
    get the next node from the frontier 

 if node contains goal state: 
  return solution   
 else: 
  add node to explored set 
  expand node and add resulting nodes to frontier,  

               if they are not in frontier or explored 

Graph search implications? 

•  We’re keeping track of all of the states that we’ve 
previously seen 

•  For problems with lots of repeated states, this is a huge 
time savings 

•  The tradeoff is that we blow-up the memory usage 
–  Space graphDFS? 

•  O(bm) 

•  Something to think about, but in practice, we often just 
use the tree approach 

8-puzzle revisited 
•  The average depth of a solution for an 8-puzzle is 22 

moves 
•  What do you think the average branching factor is? 

–  ~3 (center square has 4 options, corners have 2 and edges have 
3) 

•  An exhaustive search would require ~322 = 3.1 x 1010 
states 
–  BFS: 10 terabytes of memory 
–  DFS: 8 hours (assuming one million nodes/second) 
–  IDS: ~9 hours 

•  Can we do better? 1 

4 

6 5 2 

7 

8 3 



9 

from: Middlebury to:Montpelier 

What would the search algorithms do? 

from: Middlebury to:Montpelier 

DFS 

from: Middlebury to:Montpelier 

BFS and IDS 

from: Middlebury to:Montpelier 
We’d like to bias search towards the actual solution 

Ideas? 



10 

Informed search 
•  Order the frontier based on some knowledge of the world 

that estimates how “good” a node is 
–  f(n) is called an evaluation function 

•  Best-first search 
–  rank the frontier based on f(n) 
–  take the most desirable state in the frontier first 
–  different search depending on how we define f(n) 

def treeSearch(start): 
  add start to the frontier  
  while frontier isn’t empty: 
    get the next node from the frontier 

  if node contains goal state: 
  return solution   
 else: 
  expand node and add resulting nodes to frontier 

Heuristic 
Merriam-Webster's Online Dictionary 

Heuristic (pron. \hyu-’ris-tik\):  adj. [from Greek heuriskein to 
discover.] involving or serving as an aid to learning, discovery, 
or problem-solving by experimental and especially trial-and-
error methods  

The Free On-line Dictionary of Computing (15Feb98)  
heuristic  1. <programming> A rule of thumb, simplification or 

educated guess that reduces or limits the search for solutions 
in domains that are difficult and poorly understood. Unlike 
algorithms, heuristics do not guarantee feasible solutions and 
are often used with no theoretical guarantee. 2. <algorithm> 
approximation algorithm.  

Heuristic function: h(n) 

•  An estimate of how close the node is to a goal 
•  Uses domain-specific knowledge 
•  Examples 

–  Map path finding? 
•  straight-line distance from the node to the goal (“as the crow flies”) 

–  8-puzzle? 
•  how many tiles are out of place 

–  Missionaries and cannibals? 
•  number of people on the starting bank 

Greedy best-first search 
•  f(n) = h(n) 

–  rank nodes by how close we think they are to the goal 

Arad to Bucharest 



11 

Greedy best-first search Greedy best-first search 

Greedy best-first search Greedy best-first search 

Is this right? 



12 

Problems with greedy best-first search 

•  Time? 
– O(bm) – but can be much faster 

•  Space 
– O(bm) – have to keep them in memory to rank 

•  Complete? 

Problems with greedy best-first search 

•  Complete? 
– Graph search, yes 
– Tree search, no 

Problems with greedy best-first search 

•  Complete? 
– Graph search, yes 
– Tree search, no 

Problems with greedy best-first search 

•  Optimal? 



13 

Problems with greedy best-first search 

•  Optimal? 
– no, as we just saw in the map example 

a 

g b 

c 

d 

e 

g 

h 

i 

h=2 

h=1 

h=1 

h=1 

h=0 

h=3 

h=1 

h=0 

Sometimes 
it’s too greedy 

What is the problem? 

A* search 

•  Idea: 
– don’t expand paths that are already 

expensive 
–  take into account the path cost! 

•  f(n) = g(n) + h(n) 
– g(n) is the path cost so far 
– h(n) is our estimate of the cost to the goal 

•  f(n) is our estimate of the total path cost to 
the goal through n 

A* search 

a 

g b 

c 

d 

e 

g 

h 

i 

h=2 

h=1 

h=1 

h=1 

h=0 

h=3 

h=1 

h=0 

f(n) = 4 

f(n) = 5 

A* search 



14 

A* search A* search 

A* search A* search 



15 

A* search Admissible heuristics 
•  A heuristic function is admissible if it never 

overestimates 
–  if h*(n) is the actual distance to the goal 
–  h(n) ≤ h*(n) 

•  An admissible heuristic is optimistic (it always 
thinks the goal is closer than it actually is) 

•  Is the straight-line distance admissible? 

closest to the actual “price” 
without going over 

A* properties 
•  Time 

–  depends on heuristic, but generally exponential 

•  Space 
–  exponential (have to keep all the nodes in memory/

frontier) 
•  Complete 

–  YES 
•  Optimal 

–  YES, if the heuristic is admissible 
–  Why? 

•  If we could overestimate, then we could find (that is remove 
from the queue) a goal node that was suboptimal because 
our estimate for the optimal goal was too large 

A point of technicality 
•  Technically if the heuristic isn’t admissible, then 

the search algorithm that uses f(n) = g(n) + h(n) 
is call “Algorithm A” 

•  A* algorithm requires that the heuristic is 
admissible 

•  That said, you’ll often hear the later referred to 
as A* 

•  Algorithm A is not optimal 



16 

Admissible heuristics 

•  8-puzzle 
– h1(n) = number of misplaced tiles? 
– h2(n) = manhattan distance? 

1 

4 

6 5 2 

7 

8 3 1 

4 

3 6 7 

8 

5 2 

4 3 

6 7 8 

5 

2 1 

goal 

h1 = 7 
h2 = 12 

h1 = 8 
h2 = 8 

admissible? 

Admissible heuristics 

•  8-puzzle 
– h1(n) = number of misplaced tiles? 
– h2(n) = manhattan distance? 

1 

4 

6 5 2 

7 

8 3 1 

4 

3 6 7 

8 

5 2 

4 3 

6 7 8 

5 

2 1 

goal 

h1 = 7 
h2 = 12 

h1 = 8 
h2 = 8 

which is better? 

Dominance 
•  Given two admissible heuristic functions 

–  if hi(n) ≥ hj(n) for all n 
–  then hi(n) dominates hj(n) 

•  A dominant function is always better. Why? 
–  It always give a better (i.e. closer) estimate to the 

actual path cost, without going over 
•  What about? 

–  h1(n) = number of misplaced tiles 
–  h2(n) = manhattan distance 

Dominance 

•  h2(n) dominates h1(n) 

depth of 
solution 

IDS A*(h1) A*(h2) 

2 10 6 6 
4 112 13 12 
6 680 20 18 
8 6384 39 25 
10 47127 93 39 
12 3644035 227 73 
14 539 113 
16 1301 211 
18 3056 363 
20 7276 676 

average nodes expanded for 8-puzzle problems 



17 

Combining heuristics 
•  Sometimes, we have multiple admissible 

heuristics, but none dominates 
•  What then? 

–  We can take the max of all the heuristics! 

•  Why? 
–  Since they’re all admissible, we know none 

overestimate 
–  taking the max gives us a closer/better estimate 
–  overall, a better heuristic function 

Relaxed problems 

•  A problem with fewer restrictions on the actions is 
called a relaxed problem 

•  The cost of an optimal solution to a relaxed problem 
is an admissible heuristic for the original problem 

•  How might you create a relaxed problem for the 8-
puzzle? 
–  a tile can move anywhere (same as h1(n)) 

–  a tile can move to any adjacent square (same as h2(n)) 

Creating Heuristics 

8-Puzzle 

N-Queens 

Missionaries and Cannibals Remove 5 
Sticks 

Water Jug Problem 

5 2 

Route Planning 


