http://www.youtube.com/watch2v=OR_-Y-ellQo

UNSUPERVISED LEARNING

11/8/11

Admin

o Assignment 4 grades
o Assignment 5 part 1

o Quiz next Tuesday

Final project

o o

o

Read the entire handout

Groups of 2-3 people

o e-mail me asap if you're looking for a group
research-oriented project

o must involve some evaluation!

o must be related to NLP

Schedule

o Tuesday 11/15 project proposal

o 11/24 status report 1

o 12/1 status report 2

o 12/9 writeup (last day of classes)
o 12/6 presentation (final exam slot)

There are lots of resources out there that you can leverage
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Supervised learning: summarized

o Classification
Bayesian classifiers
= Naive Bayes classifier (linear classifier)
Multinomial logistic regression (linear classifier)
= aka Maximum Entropy Classifier (MaxEnt)

0 Regression
linear regression (fit a line to the data)

logistic regression (fit a logistic to the data)

Supervised learning: summarized

1 NB vs. multinomial logistic regression
NB has stronger assumptions: better for small amounts of
training data
MLR has more realistic independence assumptions and
performs better with more data
NB is faster and easier
o Regularization
o Training
minimize an error function
maximize the likelihood of the data (MLE)

A step back: data

WE HAVE A GIGANTIC
DATABASE FULL OF
CUSTOMER BEHAVIOR
INFORMATION.

EXCELLENT. WE CAN
USE NON-LINEAR
MATH AND DATA
MINING TECHNOLOGY
TO OPTIMIZE OUR
RETAIL CHANNELS!

y,

IF THAT'S THE
SAME THING AS
SPAM, WERE
HAVING A GOOD
MEETING HERE.

Www.diibertcom _ scoadama® ot com

Copuright 3 2000 United Feature Syndicate, Inc.
Redistribution in whole or in part prohibited

Why do we need computers for
dealing with natural text?

“Google

We knew the web was big.

712512008 10:12:00 AM

‘We've known it for a long time: the web is big. The first Google index in 1998 already had 26
million pages, and by 2000 the Google index reached the one billion mark. Over the last eight
years, we've seen a lot of big numbers about how much content is really out there. Recently,

even our search engineers stopped in awe about just how big the web s these days — when
Gur systems Thal process ks on The web 1o Tind new content Fl a milestone. on (as n
1,000,000,000,000) unique URLS on the web at oncel

How do we find all those pages? We start at a set of well-connected initial pages and follow
each of their links to new pages. Then we follow the links on those new pages to even more
pages and so on, until we have a huge list of links. In fact, we found even more than 1 trillion
individual links, but not all of them lead to unique web pages. Many pages have multiple URLs
with exactly the same content or URLS that are auto-generated copies of each other. Even
aTer removing oSS BXact CUPICates, We saw a thmon unique URLS, and the numoer of

I individual web pages out there is growing by several billion pages per day I
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Web is just the start...

e-mail

27 million tweets a day

247 billion e-mails a day

corporate

databases Blogs: 126 million different blogs

hitp:/ /royal.pingd 2010/01/22/ in-numb

Corpora examples

0 Linguistic Data Consortium

o Dictionaries
WordNet — 206K English words
CELEX2 — 365K German words
o Monolingual text
Gigaword corpus

= 4M documents (mostly news articles)
u 1.7 trillion words
# 11GB of data (4GB compressed)

Corpora examples

o Monolingual text continued
Enron e-mails
u 517K e-mails
Twitter
Chatroom
Many non-English resources
0 Parallel data
~10M sentences of Chinese-English and Arabic-English
Europarl
= ~1.5M sentences English with 10 different languages

Corpora examples

o Annotated
Brown Corpus
= 1M words with part of speech tag
Penn Treebank
= 1M words with full parse trees annotated
Other Treebanks

= Treebank refers to a corpus annotated with trees (usually
syntactic)

= Chinese: 51K sentences

® Arabic: 145K words

= many other languages...

= BLIPP: 300M words (automatically annotated)




Corpora examples
j

o Many others...
Spam and other text classification
Google n-grams
m 2006 (24GB compressed!)
= 13M unigrams
= 300M bigrams
m ~1B 3,4 and 5-grams
Speech
Video (with transcripts)

Problem
Labeled Unlabeled
web
Penn Treebank Google

1M words with full parse
trees annotated

®

. 1 trillion web pages
e-mail e pag

247 billion e-mails a day

Unsupervised learning

[
ol

Unupervised learning: given data, but no labels

How would you group these points?
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K-Means

Most well-known and popular clustering algorithm

Start with some initial cluster centers
0 lterate:

Assign/cluster each example to closest center

Recalculate centers as the mean of the points in a cluster, c:

~ 1 o-
M(C)=m;x

K-means

K-means: Initialize centers randomly

K-means: assign points to nearest center
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K-means: readjust centers

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center
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K-means: readijust centers

K-means: assign points to nearest center

No changes: Done

K-means variations/parameters

0 Initial (seed) cluster centers
11 Convergence
A fixed number of iterations
partitions unchanged
Cluster centers don’t change

o K

Hard vs. soft clustering

0 Hard clustering: Each example belongs to exactly one
cluster

01 Soft clustering: An example can belong to more than
one cluster (probabilistic)
Makes more sense for applications like creating
browsable hierarchies

You may want to put a pair of sneakers in two clusters:
(i) sports apparel and (ii) shoes
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Learning a grammar

Parsed sentences

Grammar

S —=NPVP 0.9
S— VP 0.1
NP — DetAN 0.5

Parsing other data sources

What if we wanted to parse
sentences from the web?

NP—-NPPP 03 web
| E— Leamlng/ ——— KP"A; From gé Googl
Training Ao L 04
PP PrepNP 1.0
VP — VNP 0.7
VP — VP PP 03
. Pla—fla) = count(ar — f5) English
. count(a) 1 trillion web pages
Idea 1 Idea 1
Penn Treebank Penn Grammar
2 Penn Grammar
S —NPVP 0.9
S— VP 0.1
NP — DetAN 0.5 S—NPVP 0.9 web
NP —NPPP 03 S— VP 0.1
3 NP — PropN 0.2 NP —DetAN 0.5 ‘Google
,{Q; 2\:, —> Learning/ | Ao 0.6 NP—NPPP 03
Trainin A—AGA 04 NP— PropN 0.2
g PP — Prep NP 1.0 A—s 0.6
VP — VNP 0.7 A—AdjA 0.4
VP — VP PP 03 PP — PrepNP 1.0
N VP — VNP 0.7
. Pla—pla) = count(a — f3) English VP VPPP 03 1 trillion web pages
: count(a) English

How well will this work?2
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Parsing other data sources

What if we wanted to parse

“sentences” from twitter2

27 million tweets a day

Idea 1

Penn Grammar

S—NPVP 09
S— VP 0.1
NP Det AN 0.5
NP—NPPP 03 AL

NP— PropN 0.2 4 £ o
A—ce 0.6 B e
A AdA 04
PP— Prep NP 1.0
VP—VNP 07
VP VPPP_ 03

English

27 million tweets a day

Probably not going to work very well

Ideas?

ldea 2

/" N [—

»
= =h =t et B

Learning/
Training

Pl(a—=fla)=

count(a — f)
count(a)

Pseudo-Twitter
grammar

S—NPVP 09
S— VP 0.1
NP — Det AN 0.5
NP NPPP 0.3
NP — PropN 0.2
A—e 0.6
A—AGA 04
PP—PrepNP 1.0
VP VNP 07
VP—VPPP 03

English

ldea 2

Pseudo-Twitter
grammer

S—NPVP 09
S— VP 0.1
NP Det AN 0.5
NP—NPPP 03 AL

NP— PropN 0.2 4 £ o
A—e 0.6 B e
A AdA 04
PP— Prep NP 1.0
VP—VNP 07
VP VPPP_ 03

English

27 million tweets a day

Often, this improves the parsing performance




11/8/11

ldea 3

count(ax — f) Pseudo-Twitter

Pa—pla)=
count(ca) grammer
S —NPVP 0.9
Learning/ P DeaN 08
Training — NP ProoN 02
A—e 0.6

A—AGA 04
PP—Prep NP 1.0
VPVNP 07
P VP VPPP 03

- ~ English
ILE
e e N

27 million tweets a day

Idea 3: some things to think about

0 How many iterations should we do it for2

When should we stop?

o Will we always get better?

o What does “get better” mean?

Idea 3: some things to think about

0 How many iterations should we do it for?

We should keep iterating as long as we improve

o Will we always get better?

Not guaranteed for most measures

0 What does “get better” mean?
Use our friend the development set

Does it increase the likelihood of the training data

ldea 4

What if we don’t have any parsed data?

kan Grammar

NP — Det . ~
NP — NP . o M

A % W
[ e e N e

A—AdA
PP — Prep NP
VP — VNP
VP — VP PP

27 million tweets a day

English

10
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ldea 4

Randomly initialized
grammar

S NP VP
S — VP

NP — Det AN
NP — NP PP
NP — PropN
A—e
A—AdGA
PP — Prep NP
VP - VNP
VP > VP PP

English

Pseudo-random

27 million tweets a day

Idea 4

Pseudo-Twitter
grammar

S —NPVP 0.9
S—Vp 0.1
NP — DetAN 0.5
NP—NPPP 03

Pseudo-random

. NP — PropN 0.2
—] Learning/ | [\" 06
® s A—AGA 04
Training PP PrepNP 1.0
VP — VNP 0.7
VP —VPPP 03

count( =f)  English

Pla=pla)= count(a)

ldea 4

count(ax —f) Pseudo-Twitter

Pla—=fla) =
count(a) grammer
S —NPVP 0.9
. S— VP 0.1
Learmng/ NP — DetAN 0.5
Training NP ProoN 02
A—e 0.6

A—AdA 04
PP—Prep NP 1.0
VP VNP 07
VP VPPP 03

* K English

27 million tweets a day

Idea 4

o Viterbi approximation of EM
Fast
Works ok (but we can do better)
Easy to get biased based on initial randomness
0 What information is the Viterbi approximation
throwing away?
We're somewhat randomly picking the best parse
We're ignoring all other possible parses
Real EM takes these into account

11
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A digression

Why is this called Maximum Likelihood Estimation (MLE)?

Parsed sentences Grammar

S —NPVP 0.9
S— VP 0.1
NP — DetAN 0.5
NP —NPPP 03

Learning/ NP — PropN 0.2
—

A—e 0.6
.. A—AGA 04
Training PP—Prep NP 1.0
VP — VNP 0.7
VP—-VPPP 03

count(a — f) English
count(a)

Pla —=fla)=

|

MLE

o Maximum likelihood estimation picks the values for
the model parameters that maximize the likelihood
of the training data

S—NPVP 09
S— VP 0.1
NP—DetAN 0.5
NP—NPPP 03
parameters NP—PropN 0.2

A—e 0.6 values
A—AdGA 04
PP— Prep NP 1.0
VP—VNP 07
VP VPPP 03

parameter

model (O)

Expectation Maximization (EM)

o EM also tries to maximized the likelihood of the training data
EM works without labeled training data, though!

However, because we don't have labeled data, we cannot calculate the
exact solution in closed form

Attempt to maximize training data

parameters parameter values

SSNPVP 09

EM S — VP 0.1
Training NP — DetAN 0.5
NP—NPPP 03
NP - PropN 0.2
Aoe 0.6
A—AdA 04

oooos
[=f=F=F=]=]
[=f=F=F=]=]

PP — PrepNP 1.0

VP — VNP 0.7

MLE VP> VPPP 03

Training

model (O)

EM is a general framework

11 Create an initial model, 6’

Arbitrarily, randomly, or with a small set of training examples

1 Use the model ' to obtain another model 6 such that

Zz log Pg(data;) > 2‘. log Pg/(date;) i.e. better models data
(increased log likelihood)

0 Let 8’ = 0 and repeat the above step until reaching a local
maximum

Guaranteed to find a better model after each iteration

Where else have you seen EM2

12
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EM shows up all over the place

o Training HMMs (Baum-Welch algorithm)

0 Learning probabilities for Bayesian networks

o EM-clustering

0 Learning word alignments for language translation
0 Learning Twitter friend network

o Genetics

o Finance

0 Anytime you have a model and unlabeled datal

E and M steps: creating a better model

Expectation: Given the current model, figure out the expected probabilities of the
each example
What is the probability of each point belonging to

h cl 2
p(X | ec) each cluster

What is the probability of sentence being
grammatical?

Maximization: Given the probabilities of each of the examples, estimate a new
model, B,

Just like maximum likelihood estimation, except we use fractional
counts instead of whole counts

EM clustering

We have some points in space

o We would like to put them into some
known number of groups (e.g. 2
groups/clusters)

0 Soft-clustering: rather than explicitly
assigning a point to a group, we’ll
probabilistically assign it

P(red) = 0.75
@ P(blue) = 0.25

© 0O
0 0 g ©°
0000
00 00 °

EM clustering
Model: mixture of Gaussians

1

(27)°" Jdet(z)

NIx:u,2]= exP[fé(X - W) 2 x - )]

< Z

)
20 & o
0 10 Covariance determines
0

the shape of these contours

* Fit these Gaussian densities to the data, one per cluster

13
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E and M steps: creating a better model

Expectation: Given the current model, figure out the expected probabilities of the
data points to each cluster

What is th t probability of h
p(x | ec) hait is the current probability of eac
point belonging to each cluster?

Maximization: Given the probabilistic assignment of all the points, estimate a
new model, 6,

Do MLE of the parameters (i.e. Gaussians), but use
fractional counts based on probabilities (i.e. p(x | OE)

EM example

Figure from Chris Bishop

EM example

Py

Figure from Chris Bishop

EM for parsing (Inside-Outside algorithm)

Expectation: Given the current model, figure out the expected probabilities of the
each example

p(x| Gc) What is the probability of sentence being grammatical2

Maximization: Given the probabilities of each of the examples, estimate a new
model, B,

Just like maximum likelihood estimation, except we use fractional
counts instead of whole counts

14
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Expectation step

p(sen'ence)grammar

p(time flies like an arrow), qumar =

Note: This is the language modeling problem

Expectation step

p(time flies like an arrow) . omar =

Most likely parse?

S

NP VP
p( time /N | 5) = pls—>Neve | s)* p(Np—stime | NP)

v PP
flies  /\ *plve—=vee | ve)
P NP
|ikeD® * p(v—tiies | v) * ...
an arrow

Expectation step

p(time flies like an arrow) . umar =

Sum over all the possible parses!
Often, we really want: p(time flies like an arrow | S)

s H
ST~
NP VP NP VP [s) +...
p( tme N 1S) +p( AN
\ PP N N V NP
flies / \ time flies like / \
P NP Det N
IikeA an  arrow
Det N
an arrow

Expectation step

p(time flies like an arrow) . omar =

Sum over all the possible parses!
Often, we really want: p(time flies like an arrow | S)

how can we calculate this sum2

15
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Expectation step

p(time flies like an arrow) . umar =

Probabilistic CKY Parser

Book  the flight through Houston
S:01,VPi1, S$:.05%.5%.054 Snlf;ﬂg’;“
Sum over all the possible parses! ; \_ S For any entry, sum
. . N Noe »
Often, we really want: p(time flies like an arrow | S) - i savans e
Np:be6r "032 possibilities!
NP:.6%.6.15 0024 =.00001296
Deti Z0s4 None 1000864
N Npminal:
l;umm;l:.ls . 5155032
oun:. one =loo24
CKY parsing except sum over
N . . [PP:1.0%.2%.16
possible parses instead of max S—VPPP 0.3 Prev:2 o
S — Verb NP 0.05
P:.16
IPropNoun:.8
Maximization step Maximization step
- ) i i >
0 Calculate the probabilities of the grammar rules Say we're trying to figure out VP -> V PP
using partial counts MLE EM
s
MLE EM . Lo
NP K p(VP —V PP | time flies like an arrow, S)
time
count(a — ) v PP
Pla—=Bla)y=———— 2 flies
count(ct) P
like /\
Det N
an arrow
fractional count based on the sentence and
count this as one occurrence how likely the sentence is to be grammatical

16
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Maximization step
|
p(VP =V PP | time flies like an arrow, S)

def. of conditional
probability

_ p(VP =V PP, time flies like an arrow |S)
B p(time flies like an arrow |S)

_ p(VP —V PP)p(time VP |S) p(left - side | V) p(right - side | PP)

p(time flies like an arrow IS)

conditional independence
as specified by the PCFG

Maximization step

p(VP —V PP)p(time VP IS) p(left - side | V) p(right - side | PP)

p(time flies like an arrow |S)

@

flies like an arrow

Inside & Outside Probabilities
==

\P
o e
M o\,\\s‘de
a,(1,5) = p(time VP today | S)
The “outside” probabilities we can calculate
using top-down approach (after we have the
“inside” probabilities

Byp(1,5) = plflies like an arrow | VP)

The “inside” probabilities we can calculate

H"”SI’de" using a CKY-style, bottom-up approach

the vp

EM grammar induction

o1 The good:
We learn a grammar
At each step we're guaranteed to increase (or keep the
same) the likelihood of the training data

o The bad
Slow: O(m®n3), where m = sentence length and n = non-
terminals in the grammar
Lot’s of local maxima
Often have to use more non-terminals in the grammar than
are theoretically motivated (often ~3 times)
Often non-terminals learned have no relation to traditional
constituents

17
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But...

o If we bootstrap and start with a reasonable
grammar, we can often obtain very interesting
results

Penn Grammar

S—NPVP 09
S VP 0.1
NP — DetAN 0.5
NP—NPPP 03
NP— PropN 0.2
A—e 0.6
A—AGA 04
PP —Prep NP 1.0
VP VNP 07
VP VPPP 03

English

EM: Finding Word Alignments

... lamaison ... la maison bleue ... la fleur ...
... the house ... the blue house ... the flower ...

* In machine translation, we train from pairs of translated sentences
* Often useful to know how the words align in the sentences
* Use EM: learn a model of P(french-word | english-word)

Idea?

EM: Finding Word Alignments

Expectation: Given the current model, figure out the expected probabilities of the
each example

p(x| ec) What is the probability of this word alignment?

Maximization: Given the probabilities of each of the examples, estimate a new
model, 6,

Just like maximum likelihood estimation, except we use fractional
counts instead of whole counts:

count the fractional counts of one word aligning to another

EM: Finding Word Alignments

... lamaison ... la maison bleue ... la fleur ...

X

... the house ... the blue house ... the flower ...

All word alignments equally likely

All P(french-word | english-word) equally likely

18
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EM: Finding Word Alignments

... lamaison ... la maison bleue ... la fleur ...

... the house ... the blue house ... the flower ...

“la” and “the” observed to co-occur frequently,
so P(la | the) is increased.

EM: Finding Word Alignments

... lamaison ... la maison bleue ... la fleur ...

... the house ... the blue house ... the flower ...

“house” co-occurs with both “la” and “maison”, but
P(maison | house) can be raised without limit, to 1.0,
while P(la | house) is limited because of “the”

(pigeonhole principle)

EM: Finding Word Alignments

... lamaison ... la maison bleue ... la fleur ...

|1 B> 1

... the house ... the blue house ... the flower ...

settling down after another iteration

EM: Finding Word Alignments

... lamaison ... la maison bleue ... la fleur ...

L1 X |

... the house ... the blue house ... the flower ...

Inherent hidden structure revealed by EM training!
For details, see
- “A Statistical MT Tutorial Workbook” (Knight, 1999).
- 37 easy sections, final section promises a free beer.
- “The Mathematics of Statistical Machine Translation”
(Brown et al, 1993)
- Software: GIZA++

19
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Statistical Machine Translation

... lamaison ... la maison bleue ... la fleur ...

\ 11X |

... the house ... the blue house ... the flower ...

P(maison | house ) = 0.411
P(maison | building) = 0.027
P(maison | manson) = 0.020

Estimating the model from training data

EM summary

o EM is a popular technique in NLP

o EM is useful when we have lots of unlabeled data
we may have some labeled data
or partially labeled data

0 Broad range of applications

o Can be hard to get it right, though...

Human Parsing
1 How do humans do it?

01 How might you try and figure it out computationally,/
experimentally?

Human Parsing

11 Read these sentences

o Which one was fastest/slowest?

John put the dog in the pen with a lock.
John carried the dog in the pen with a bone in the car.

John liked the dog in the pen with a bone.

20
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Human Parsing

Computational parsers can be used to predict human
reading time as measured by tracking the time taken to
read each word in a sentence.
Psycholinguistic studies show that words that are more
probable given the preceding lexical and syntactic
context are read faster.

John put the dog in the pen with a lock.

John carried the dog in the pen with a bone in the car.

John liked the dog in the pen with a bone.
Modeling these effects requires an incremental statistical
parser that incorporates one word at a time into a
continuously growing parse tree.

Human Parsing

Computational parsers can be used to predict human
reading time as measured by tracking the time taken to
read each word in a sentence.
Psycholinguistic studies show that words that are more
probable given the preceding lexical and syntactic
context are read faster.

John put the dog in the pen with a lock.

John carried the dog in the pen with a bone in the car.

John liked the dog in the pen with a bone.
Modeling these effects requires an incremental statistical
parser that incorporates one word at a time into a
continuously growing parse tree.

Garden Path Sentences

People are confused by sentences that seem to have a
particular syntactic structure but then suddenly violate
this structure, so the listener is “lead down the garden
path”.

The horse raced past the barn fell.

vs. The horse raced past the barn broke his leg.

The complex houses married students.

The old man the sea.

While Anna dressed the baby spit up on the bed.
Incremental computational parsers can try to predict
and explain the problems encountered parsing such
sentences.

21



