
11/8/11	

1	

http://www.youtube.com/watch?v=OR_-Y-eIlQo UNSUPERVISED LEARNING
David Kauchak
CS 457 – Spring 2011

some slides adapted from
Dan Klein

Admin

¨  Assignment 4 grades
¨  Assignment 5 part 1
¨  Quiz next Tuesday

Final project

¨  Read the entire handout
¨  Groups of 2-3 people

¤  e-mail me asap if you’re looking for a group
¨  research-oriented project

¤  must involve some evaluation!
¤  must be related to NLP

¨  Schedule
¤  Tuesday 11/15 project proposal
¤  11/24 status report 1
¤  12/1 status report 2
¤  12/9 writeup (last day of classes)
¤  12/6 presentation (final exam slot)

¨  There are lots of resources out there that you can leverage

11/8/11	

2	

Supervised learning: summarized

¨  Classification
¤ Bayesian classifiers

n Naïve Bayes classifier (linear classifier)

¤ Multinomial logistic regression (linear classifier)
n aka Maximum Entropy Classifier (MaxEnt)

¨  Regression
¤  linear regression (fit a line to the data)
¤  logistic regression (fit a logistic to the data)

Supervised learning: summarized

¨  NB vs. multinomial logistic regression
¤ NB has stronger assumptions: better for small amounts of

training data
¤ MLR has more realistic independence assumptions and

performs better with more data
¤ NB is faster and easier

¨  Regularization
¨  Training

¤ minimize an error function
¤ maximize the likelihood of the data (MLE)

A step back: data
Why do we need computers for
dealing with natural text?

11/8/11	

3	

Web is just the start…

e-mail

corporate
databases

http://royal.pingdom.com/2010/01/22/internet-2009-in-numbers/

27 million tweets a day

Blogs: 126 million different blogs

247 billion e-mails a day

Corpora examples

¨  Linguistic Data Consortium
¤ http://www.ldc.upenn.edu/Catalog/byType.jsp

¨  Dictionaries
¤ WordNet – 206K English words
¤ CELEX2 – 365K German words

¨  Monolingual text
¤ Gigaword corpus

n 4M documents (mostly news articles)
n 1.7 trillion words
n 11GB of data (4GB compressed)

Corpora examples

¨  Monolingual text continued
¤ Enron e-mails

n 517K e-mails
¤ Twitter
¤ Chatroom
¤ Many non-English resources

¨  Parallel data
¤ ~10M sentences of Chinese-English and Arabic-English
¤ Europarl

n ~1.5M sentences English with 10 different languages

Corpora examples

¨  Annotated
¤  Brown Corpus

n  1M words with part of speech tag
¤  Penn Treebank

n  1M words with full parse trees annotated
¤ Other Treebanks

n  Treebank refers to a corpus annotated with trees (usually
syntactic)

n  Chinese: 51K sentences
n  Arabic: 145K words
n  many other languages…
n  BLIPP: 300M words (automatically annotated)

11/8/11	

4	

Corpora examples

¨  Many others…
¤ Spam and other text classification
¤ Google n-grams

n 2006 (24GB compressed!)
n 13M unigrams
n 300M bigrams
n ~1B 3,4 and 5-grams

¤ Speech
¤ Video (with transcripts)

Problem

e-mail

247 billion e-mails a day

web

1 trillion web pages

Penn Treebank
1M words with full parse
trees annotated

L

Unlabeled Labeled

Unsupervised learning

Unupervised learning: given data, but no labels

How would you group these points?

11/8/11	

5	

K-Means

¨  Most well-known and popular clustering algorithm

¨  Start with some initial cluster centers
¨  Iterate:

¤ Assign/cluster each example to closest center
¤  Recalculate centers as the mean of the points in a cluster, c:

∑
∈

=
cx
x

c 


||
1(c)µ

K-means

K-means: Initialize centers randomly K-means: assign points to nearest center

11/8/11	

6	

K-means: readjust centers K-means: assign points to nearest center

K-means: readjust centers K-means: assign points to nearest center

11/8/11	

7	

K-means: readjust centers K-means: assign points to nearest center

No changes: Done

K-means variations/parameters

¨  Initial (seed) cluster centers
¨  Convergence

¤ A fixed number of iterations
¤ partitions unchanged
¤ Cluster centers don’t change

¨  K

Hard vs. soft clustering

¨  Hard clustering: Each example belongs to exactly one
cluster

¨  Soft clustering: An example can belong to more than
one cluster (probabilistic)
¤ Makes more sense for applications like creating

browsable hierarchies
¤ You may want to put a pair of sneakers in two clusters:

(i) sports apparel and (ii) shoes

11/8/11	

8	

Learning a grammar

Learning/
Training

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English …

!

P(" #$ |") =
count(" #$)
count(")

Parsed sentences Grammar

Parsing other data sources

web

1 trillion web pages

What if we wanted to parse
sentences from the web?

Idea 1

Learning/
Training

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English …

!

P(" #$ |") =
count(" #$)
count(")

Penn Treebank Penn Grammar

Idea 1

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Penn Grammar

web

1 trillion web pages

How well will this work?

11/8/11	

9	

Parsing other data sources

What if we wanted to parse
“sentences” from twitter?

27 million tweets a day

Idea 1

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Penn Grammar

27 million tweets a day

Probably not going to work very well

Ideas?

Idea 2

Learning/
Training

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

!

P(" #$ |") =
count(" #$)
count(")

Pseudo-Twitter
grammar

Idea 2

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Pseudo-Twitter
grammer

27 million tweets a day

*

Often, this improves the parsing performance

11/8/11	

10	

Idea 3

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Pseudo-Twitter
grammer

27 million tweets a day

*

Learning/
Training !

P(" #$ |") =
count(" #$)
count(")

Idea 3: some things to think about

¨  How many iterations should we do it for?
¤ When should we stop?

¨  Will we always get better?

¨  What does “get better” mean?

Idea 3: some things to think about

¨  How many iterations should we do it for?
¤ We should keep iterating as long as we improve

¨  Will we always get better?
¤ Not guaranteed for most measures

¨  What does “get better” mean?
¤ Use our friend the development set
¤ Does it increase the likelihood of the training data

Idea 4

What if we don’t have any parsed data?

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Penn Grammar

27 million tweets a day

11/8/11	

11	

Idea 4

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

?
?
?
?
?
?
?
?
?
?

English

Randomly initialized
grammar

27 million tweets a day

Pseudo-random

Idea 4

Learning/
Training

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

!

P(" #$ |") =
count(" #$)
count(")

Pseudo-Twitter
grammar

Pseudo-random

Idea 4

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Pseudo-Twitter
grammer

27 million tweets a day

*

Learning/
Training !

P(" #$ |") =
count(" #$)
count(")

Idea 4

¨  Viterbi approximation of EM
¤ Fast
¤ Works ok (but we can do better)
¤ Easy to get biased based on initial randomness

¨  What information is the Viterbi approximation
throwing away?
¤ We’re somewhat randomly picking the best parse
¤ We’re ignoring all other possible parses
¤ Real EM takes these into account

11/8/11	

12	

A digression

Learning/
Training

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English …

!

P(" #$ |") =
count(" #$)
count(")

Parsed sentences Grammar

Why is this called Maximum Likelihood Estimation (MLE)?

MLE

¨  Maximum likelihood estimation picks the values for
the model parameters that maximize the likelihood
of the training data

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

model (Θ)

parameters parameter
values

Expectation Maximization (EM)
¨  EM also tries to maximized the likelihood of the training data

¤  EM works without labeled training data, though!

¨  However, because we don’t have labeled data, we cannot calculate the
exact solution in closed form

model (Θ)

parameters

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

parameter values

MLE
Training

EM
Training

Attempt to maximize training data

EM is a general framework

¨  Create an initial model, θ’
¤  Arbitrarily, randomly, or with a small set of training examples

¨  Use the model θ’ to obtain another model θ such that

 Σi log Pθ(datai) > Σi log Pθ’(datai)

¨  Let θ’ = θ and repeat the above step until reaching a local
maximum
¤  Guaranteed to find a better model after each iteration

Where else have you seen EM?

i.e. better models data
(increased log likelihood)

11/8/11	

13	

EM shows up all over the place

¨  Training HMMs (Baum-Welch algorithm)
¨  Learning probabilities for Bayesian networks
¨  EM-clustering
¨  Learning word alignments for language translation
¨  Learning Twitter friend network
¨  Genetics
¨  Finance
¨  Anytime you have a model and unlabeled data!

E and M steps: creating a better model

Expectation: Given the current model, figure out the expected probabilities of the
each example

Maximization: Given the probabilities of each of the examples, estimate a new
model, θc

p(x|θc)
What is the probability of each point belonging to
each cluster?

Just like maximum likelihood estimation, except we use fractional
counts instead of whole counts

What is the probability of sentence being
grammatical?

EM clustering

¨  We have some points in space
¨  We would like to put them into some

known number of groups (e.g. 2
groups/clusters)

¨  Soft-clustering: rather than explicitly
assigning a point to a group, we’ll
probabilistically assign it

P(red) = 0.75
P(blue) = 0.25

EM clustering
Model: mixture of Gaussians

()
1

/2
1 1[; ,] exp[() ()]

22 det()
T

dN x x xµ µ µ
π

−Σ = − − Σ −
Σ

Covariance determines
the shape of these contours

•  Fit these Gaussian densities to the data, one per cluster

11/8/11	

14	

E and M steps: creating a better model

Expectation: Given the current model, figure out the expected probabilities of the
data points to each cluster

Maximization: Given the probabilistic assignment of all the points, estimate a
new model, θc

p(x|θc) What is the current probability of each
point belonging to each cluster?

Do MLE of the parameters (i.e. Gaussians), but use
fractional counts based on probabilities (i.e. p(x | Θc)

EM example

Figure from Chris Bishop

EM example

Figure from Chris Bishop

Expectation: Given the current model, figure out the expected probabilities of the
each example

Maximization: Given the probabilities of each of the examples, estimate a new
model, θc

p(x|θc)

Just like maximum likelihood estimation, except we use fractional
counts instead of whole counts

What is the probability of sentence being grammatical?

EM for parsing (Inside-Outside algorithm)

11/8/11	

15	

Expectation step

p(sentence)grammar

p(time flies like an arrow)grammar = ?

Note: This is the language modeling problem

Expectation step

p(time flies like an arrow)grammar = ?

S

NP
time

VP

V
flies

PP

P
like

NP

Det
an

N
 arrow

p(| S) = p(S → NP VP | S) * p(NP → time | NP)

* p(VP → V PP | VP)

* p(V → flies | V) * …

Most likely parse?

Expectation step

p(time flies like an arrow)grammar = ?

S

NP
time

VP

V
flies

PP

P
like

NP

Det
an

N
 arrow

p(| S)

S

NP VP

N
flies

V
like

NP

Det
an

N
 arrow

| S) + …
N
time

+ p(

Sum over all the possible parses!
Often, we really want: p(time flies like an arrow | S)

Expectation step

p(time flies like an arrow)grammar = ?

Sum over all the possible parses!
Often, we really want: p(time flies like an arrow | S)

how can we calculate this sum?

11/8/11	

16	

Expectation step

p(time flies like an arrow)grammar = ?

Sum over all the possible parses!
Often, we really want: p(time flies like an arrow | S)

CKY parsing except sum over
possible parses instead of max

Probabilistic CKY Parser

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
 .0024
 =.000864

S:.05*.5*
 .000864
 =.0000216

S:.03*.0135*
 .032
 =.00001296

S → VP PP 0.03

S → Verb NP 0.05

For any entry, sum
over the
possibilities!

Maximization step

¨  Calculate the probabilities of the grammar rules
using partial counts

!

P(" #$ |") =
count(" #$)
count(")

MLE EM

?

Maximization step

S

NP
time

VP

V
flies

PP

P
like

NP

Det
an

N
 arrow

Say we’re trying to figure out VP -> V PP

MLE EM

count this as one occurrence
fractional count based on the sentence and
how likely the sentence is to be grammatical

!

p(VP "V PP | time flies like an arrow, S)

11/8/11	

17	

Maximization step

!

=
p(VP "V PP, time flies like an arrow |S)

p(time flies like an arrow |S)!

p(VP "V PP | time flies like an arrow, S)

def. of conditional
probability

!

=
p(VP "V PP)p(time VP |S) p(left - side | V) p(right - side | PP)

p(time flies like an arrow |S)

conditional independence
as specified by the PCFG

Maximization step

S

VP

V

PP

time

flies like an arrow

!

p(VP "V PP)p(time VP |S) p(left - side | V) p(right - side | PP)
p(time flies like an arrow |S)

βVP(1,5) = p(flies like an arrow | VP)

αVP(1,5) = p(time VP today | S)

Inside & Outside Probabilities
S

NP
time

VP

VP NP
today

V
flies

PP

P
like

NP

Det
an

N
 arrow

“inside” the VP

“outside” the VP

The “inside” probabilities we can calculate
using a CKY-style, bottom-up approach

The “outside” probabilities we can calculate
using top-down approach (after we have the
“inside” probabilities

EM grammar induction

¨  The good:
¤ We learn a grammar
¤ At each step we’re guaranteed to increase (or keep the

same) the likelihood of the training data
¨  The bad

¤  Slow: O(m3n3), where m = sentence length and n = non-
terminals in the grammar

¤  Lot’s of local maxima
¤ Often have to use more non-terminals in the grammar than

are theoretically motivated (often ~3 times)
¤ Often non-terminals learned have no relation to traditional

constituents

11/8/11	

18	

But…

¨  If we bootstrap and start with a reasonable
grammar, we can often obtain very interesting
results

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Penn Grammar

EM: Finding Word Alignments

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

•  In machine translation, we train from pairs of translated sentences
•  Often useful to know how the words align in the sentences
•  Use EM: learn a model of P(french-word | english-word)

Idea?

Expectation: Given the current model, figure out the expected probabilities of the
each example

Maximization: Given the probabilities of each of the examples, estimate a new
model, θc

p(x|θc)

Just like maximum likelihood estimation, except we use fractional
counts instead of whole counts:

count the fractional counts of one word aligning to another

What is the probability of this word alignment?

EM: Finding Word Alignments

EM: Finding Word Alignments

All word alignments equally likely

All P(french-word | english-word) equally likely

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

11/8/11	

19	

EM: Finding Word Alignments

“la” and “the” observed to co-occur frequently,
so P(la | the) is increased.

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

EM: Finding Word Alignments

“house” co-occurs with both “la” and “maison”, but
P(maison | house) can be raised without limit, to 1.0,
while P(la | house) is limited because of “the”

(pigeonhole principle)

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

EM: Finding Word Alignments

settling down after another iteration

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

EM: Finding Word Alignments

Inherent hidden structure revealed by EM training!
For details, see
 - “A Statistical MT Tutorial Workbook” (Knight, 1999).
 - 37 easy sections, final section promises a free beer.

 - “The Mathematics of Statistical Machine Translation”
 (Brown et al, 1993)
 - Software: GIZA++

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

11/8/11	

20	

Statistical Machine Translation

P(maison | house) = 0.411
P(maison | building) = 0.027
P(maison | manson) = 0.020
…

Estimating the model from training data

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

EM summary

¨  EM is a popular technique in NLP
¨  EM is useful when we have lots of unlabeled data

¤ we may have some labeled data
¤ or partially labeled data

¨  Broad range of applications
¨  Can be hard to get it right, though…

Human Parsing

¨  How do humans do it?

¨  How might you try and figure it out computationally/
experimentally?

Human Parsing

¨  Read these sentences
¨  Which one was fastest/slowest?

John put the dog in the pen with a lock.

John carried the dog in the pen with a bone in the car.

John liked the dog in the pen with a bone.

11/8/11	

21	

Human Parsing

¨  Computational parsers can be used to predict human
reading time as measured by tracking the time taken to
read each word in a sentence.

¨  Psycholinguistic studies show that words that are more
probable given the preceding lexical and syntactic
context are read faster.
¤  John put the dog in the pen with a lock.
¤  John carried the dog in the pen with a bone in the car.
¤  John liked the dog in the pen with a bone.

¨  Modeling these effects requires an incremental statistical
parser that incorporates one word at a time into a
continuously growing parse tree.

Human Parsing

¨  Computational parsers can be used to predict human
reading time as measured by tracking the time taken to
read each word in a sentence.

¨  Psycholinguistic studies show that words that are more
probable given the preceding lexical and syntactic
context are read faster.
¤  John put the dog in the pen with a lock.
¤  John carried the dog in the pen with a bone in the car.
¤  John liked the dog in the pen with a bone.

¨  Modeling these effects requires an incremental statistical
parser that incorporates one word at a time into a
continuously growing parse tree.

Garden Path Sentences

¨  People are confused by sentences that seem to have a
particular syntactic structure but then suddenly violate
this structure, so the listener is “lead down the garden
path”.
¤  The horse raced past the barn fell.

n  vs. The horse raced past the barn broke his leg.

¤  The complex houses married students.
¤  The old man the sea.
¤  While Anna dressed the baby spit up on the bed.

¨  Incremental computational parsers can try to predict
and explain the problems encountered parsing such
sentences.

