

Final project ideas

- spelling correction
- part of speech tagger
- text chunker
- dialogue generation
- pronoun resolution
- compare word similarity measures (more than the ones we're looking at for assign.
 5)
- word sense disambiguation
- machine translation
 compare sentence alignment techniques
- information retrieval
- information extraction
- question answering
- summarization
- speech recognition

Final project ideas

- pick a text classification task
- pick or text classification fask
 of evaluate different machine learning method
 implement a machine learning method
 in analyze different feature categories
 n-gram language modeling
 implement and compare other smoothing techniques
 implement alternative models

- Implement anternarve macters
 parsing
 PCG5-based language modeling
 lexicalized PCG (with smoothing)
 true n-best list generation
 parse output retranking
 Implement another parsing approach and compare
 parsing non-traditional domains (e.g. twitter)
 EM
- EM
- word-alignment for text-to-text translation
 grammar induction

Word similarity Four general categories Character-based turned vs. truned cognates (night, nacht, nicht, natt, nat, noc, noch) Semantic web-based (e.g. WordNet) Dictionary-based

Distributional similarity-based
 similar words occur in similar contexts

Corpus-based approaches

Corpus-based

The **Beagle** is a breed of small to medium-sized dog. A member of the Hound Group, it is similar in appearance to the Foxhound but smaller, with shorter leg

Beagles are intelligent, and are popular as pets because of their size, even temper, and lack of inherited health problems.

Dogs of similar size and purpose to the modern $\ensuremath{\textit{Beagle}}$ can be traced in Ancient Greece[2] back to around the 5th century BC.

From medieval times, **beagle** was used as a generic description for the smaller hounds, though these dogs differed considerably from the modern breed.

In the 1840s, a standard ${\rm \textit{Beagle}}$ type was beginning to develop: the distinction between the North Country Beagle and Southern

Corpus-based: feature extraction

The ${\it Beagle}$ is a breed of small to medium-sized dog. A member of the Hound Group, it is similar in appearance to the Foxhound but smaller, with shorter leg

- We'd like to utilize or vector-based approach
- How could we we create a vector from these occurrences?
 collect word counts from all documents with the word in it
 - collect word counts from all accuments with the word in it
 collect word counts from all sentences with the word in it
 - collect all word counts from all words within X words of the word
 - collect all words counts from words in specific relationship: subjectobject, etc.

Word-context co-occurrence vectors

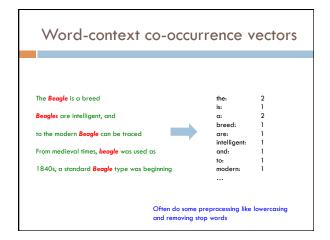
The **Beagle** is a breed of small to medium-sized dog. A member of the Hound Group, it is similar in appearance to the Foxhound but smaller, with shorter leg

Beagles are intelligent, and are popular as pets because of their size, even temper, and lack of inherited health problems.

Dogs of similar size and purpose **to the modern Beagle can be traced** in Ancient Greece[2] back to around the 5th century BC.

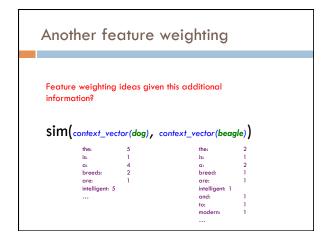
From medieval times, beagle was used as a generic description for the smaller hounds, though these dogs differed considerably from the modern breed.

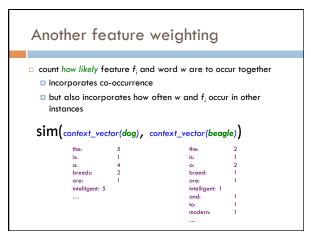
In the 1840s, a standard Beagle type was beginning to develop: the distinction between the North Country Beagle and Southern



Corp	ous-ba	sed simil	arity	
sim	(dog.	beagle)	=	
		• •		
SIIII			context_vecto	
	the:	5	the:	2
	is:	1	is:	
			13.	1
	a:	4	a:	2
		4 2		1 2 1
	a:		a:	1 2 1 1
	a: breeds:		a: breed:	1 2 1 1 1
	a: breeds: are:	2 1	a: breed: are:	1 2 1 1 1 1
	a: breeds: are: intelligent:	2 1	a: breed: are: intelligent:	1 2 1 1 1 1 1
	a: breeds: are: intelligent:	2 1	a: breed: are: intelligent: and:	1 2 1 1 1 1 1 1
	a: breeds: are: intelligent:	2 1	a: breed: are: intelligent: and: to:	1 2 1 1 1 1 1 1
	a: breeds: are: intelligent:	2 1	a: breed: are: intelligent: and: to: modern:	1 2 1 1 1 1 1

Anc	other fe	eature v	veighting	
TFIDF	weiahtina ta	akes into acco	unt the general in	nportance of a
featur	0 0		3	
- For di	stributional	imilarity wo	have the feature	(f) but we also
		-		
have t	he word ifse	elf (w) that we	e can use for infor	mation
sim	(context_ve	ector(dog), co	ontext_vector(bea	gle)
sim	(context_ve	ector(dog), co	ontext_vector(bea	gle))
sim	•	•		gle))
sim	the: is: a:	5 1 4	the: is: a:	gle)) 2 1 2
sim	the: is:	•	the: is:	gle)) 2 1 2 1
sim	the: is: a:	5 1 4	the: is: a:	gle)) 2 1 2 1
sim	• is: a: breeds:	5 1 4 2 1	the: is: a: breed:	gle)) 2 1 2 1 1
sim	the: is: a: breeds: are:	5 1 4 2 1	the: is: a: breed: are:	gle)) 2 1 2 1 1 1
sim	the: is: a: breeds: are: intelligent: d	5 1 4 2 1	the: is: a: breed: are: intelligent: 1	gle)) 2 1 2 1 1 1 1
sim	the: is: a: breeds: are: intelligent: d	5 1 4 2 1	the: is: a: breed: are: intelligent: 1 and:	gle)) 2 1 1 1 1 1 1





Mutual information

A bit more probability [©]

$$I(X,Y) = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

When will this be high and when will this be low?

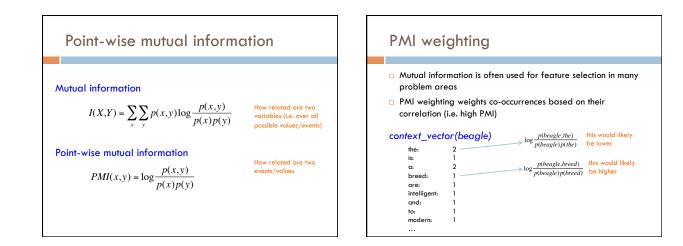
Mutual information

 \square A bit more probability $\textcircled{\odot}$

$$I(X,Y) = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

- if x and y are independent (i.e. one occurring doesn't impact the other occurring) p(x,y) = p(x)p(y) and the sum is 0

- if they're dependent then p(x,y) = p(x)p(y | x) = p(y)p(x | y) then we get p(y | x)/p(y) (i.e. how much more likely are we to see y given x has a particular value) or vice versa p(x | y)/p(x)

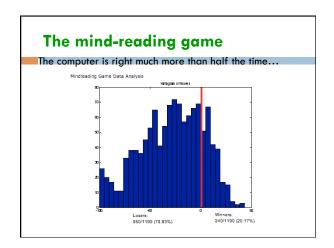


The mind-reading game

How good are you at guessing random numbers?

Repeat 100 times: Computer guesses whether you'll type 0/1 You type 0 or 1

http://seed.ucsd.edu/~mindreader/ [written by Y. Freund and R. Schapire]



The mind-reading game

The computer is right much more than half the time...

Strategy: computer predicts next keystroke based on the last few (maintains weights on different patterns)

There are patterns everywhere... even in "randomness"!

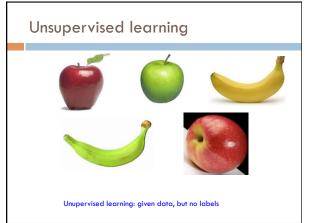
Why machine learning?

Lot's of data

- Hand-written rules just don't do it
- Performance is much better than what people can do
- □ Why not just study machine learning?
 - Domain knowledge/expertise is still very important
 What types of features to use
 - What models are important

Machine learning problems

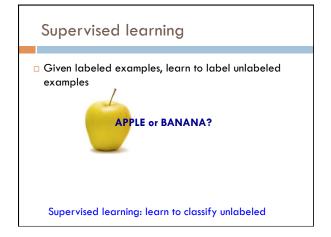
- Lots of different types of problems
 - What data is available:
 - Supervised, unsupervised, semi-supervised, reinforcement learning
 How are we getting the data:
 - now are we getting me a
 online vs. offline learning
 - Type of model:
 - generative vs. disciminative
 - parametric vs. non-parametric
 - SVM, NB, decision tree, k-means
 - What are we trying to predict:
 - classification vs. regression

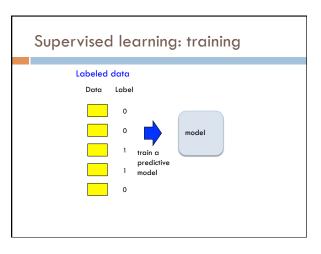


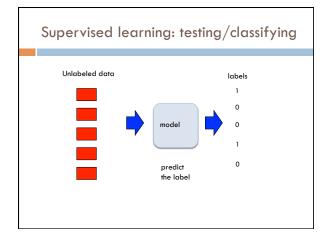
Unsupervised learning

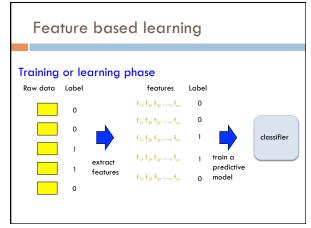
- Much easier to get our hands on unlabeled dataExamples:
 - learn clusters/groups without any label
 - learn grammar probabilities without trees
 - learn HMM probabilities without labels
- Because there is no label, often can get odd results
 unsupervised grammar learned often has little relation to linguistically motivated grammar
 - may cluster bananas/apples or green/red/yellow

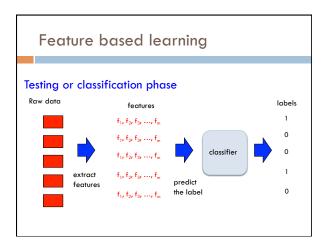
Supervised learning

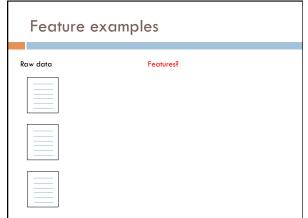


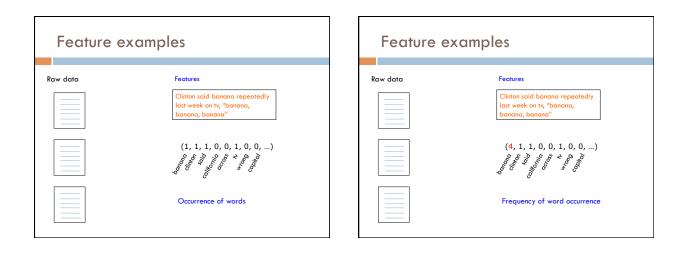


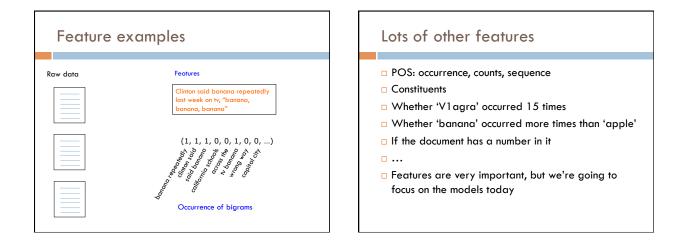


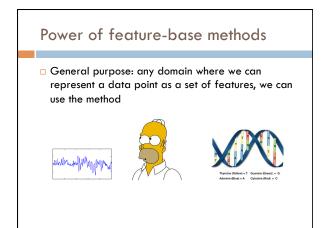


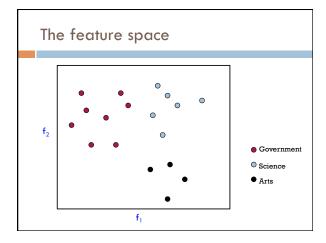


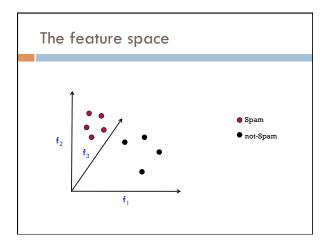


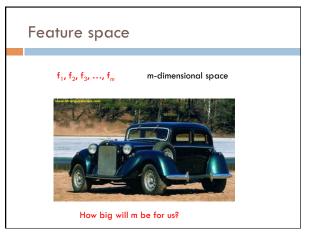


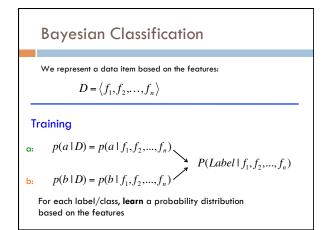












Bayesian Classification

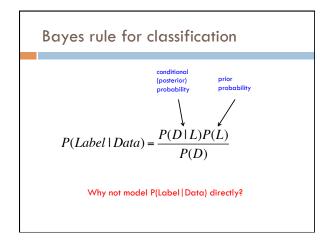
We represent a data item based on the features:

 $D = \left\langle f_1, f_2, \dots, f_n \right\rangle$

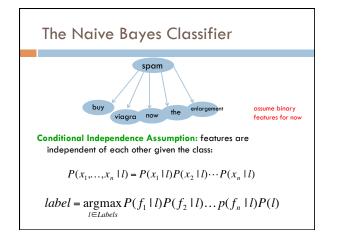
Classifying

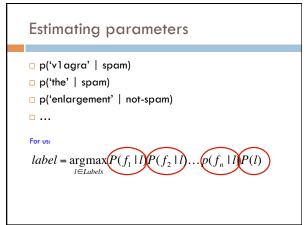
 $label = \operatorname*{argmax}_{l \in Labels} P(l \mid f_1, f_2, \dots, f_n)$

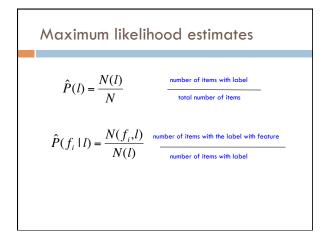
Given an *new* example, classify it as the label with the largest conditional probability

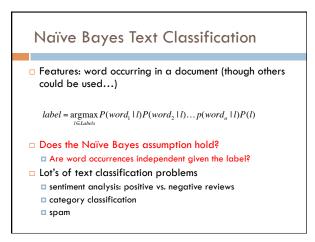


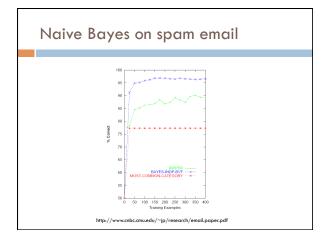


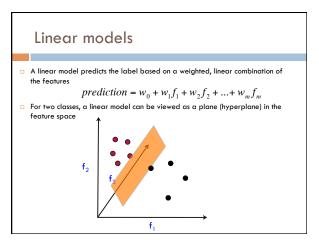


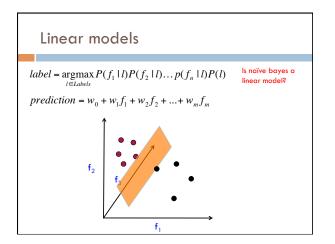


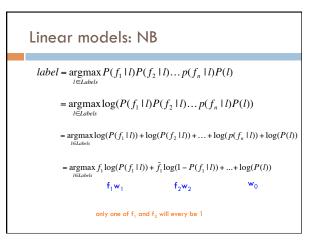


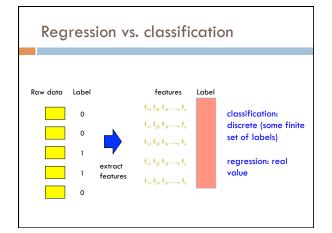










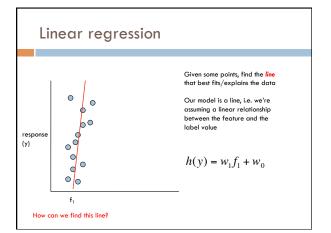


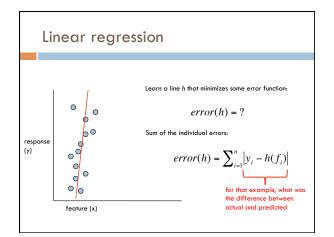
`		assification
		Examples
features	response	- predict a readability score
f ₁ , f ₂ , f ₃ ,, f _n	1.0	between 0-100 for a document
1, f ₂ , f ₃ ,, f _n	2.3	 predict the number of votes/reposts
f ₁ , f ₂ , f ₃ ,, f _n	.3	- predict cost to insure
f ₁ , f ₂ , f ₃ ,, f _n	100.4	 predict income predict life longevity
f ₁ , f ₂ , f ₃ ,, f _n	123	

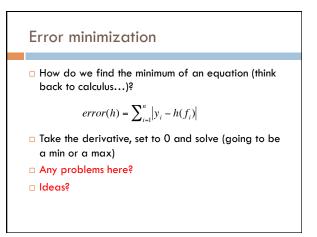
Model-based regression

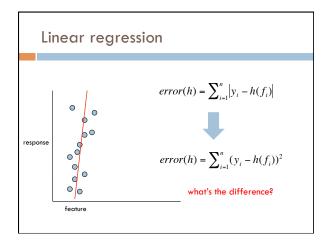
A model

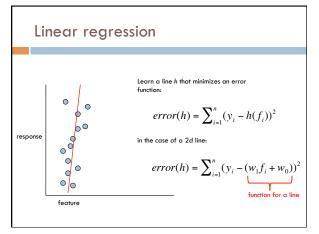
- Often we have an idea of what the data might look like
 ... or we don't, but we assume the data looks like something we know how to handle
- Learning then involves finding the best parameters for the model based on the data
- Regression models (describe how the features combine to get the result/label)
 - linear
 - logistic
 - polynomial
 - ...











Linear regression

We'd like to minimize the error
 Find w₁ and w₀ such that the error is minimized

$$error(h) = \sum_{i=1}^{n} (y_i - (w_1 f_i + w_0))^2$$

□ We can solve this in closed form

Multiple linear regression

- Often, we don't just have one feature, but have many features, say m
- Now we have a line in *m* dimensions
- Still just a line

$$h(\bar{f}) = w_0 + w_1 f_1 + w_2 f_2 + \ldots + w_m f_m$$
weights

A linear model is additive. The weight of the feature dimension specifies importance/direction

Multiple linear regression

We can still calculate the squared error like before

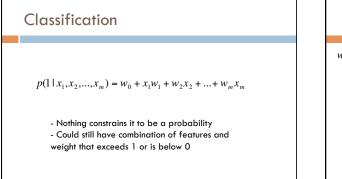
$$h(\bar{f}) = w_0 + w_1 f_1 + w_2 f_2 + \dots + w_m f_n$$

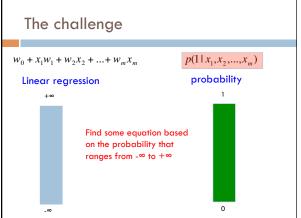
$$error(h) = \sum_{i=1}^{n} (y_i - (w_0 + w_1 f_1 + w_2 f_2 + \dots + w_m f_m))^2$$

Still can solve this exactly!

Probabilistic classification We're NLP people We like probabilities! http://xkcd.com/114/

 We'd like to do something like regression, but that gives us a probability

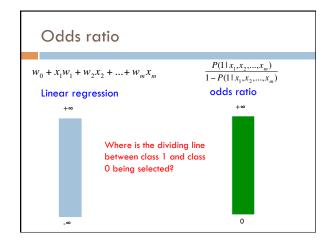


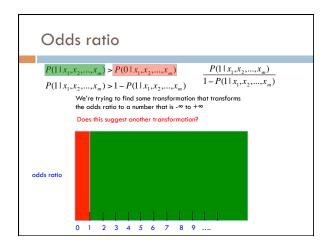


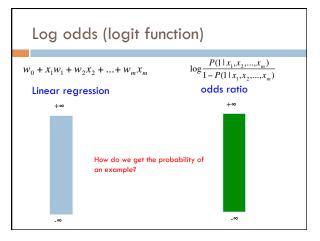
Odds ratio

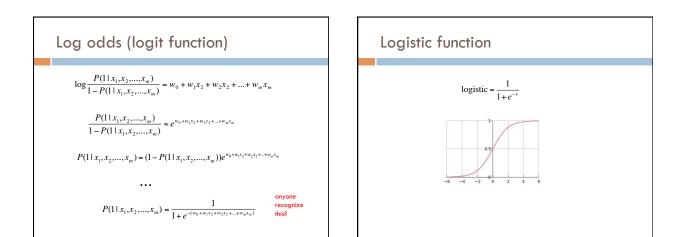
- $\hfill \ensuremath{\square}$ Rather than predict the probability, we can predict the ratio of 1/0 (true/false)
- Predict the odds that it is 1 (true): How much more likely is 1 than 0.
- Does this help us?

$$\frac{P(1 \mid x_1, x_2, \dots, x_m)}{P(0 \mid x_1, x_2, \dots, x_m)} = \frac{P(1 \mid x_1, x_2, \dots, x_m)}{1 - P(1 \mid x_1, x_2, \dots, x_m)} = w_0 + x_1 w_1 + w_2 x_2 + \dots + w_m x_m$$









18

