Hand video

- http://www.youtube.com/watch?v=-KxjVlaLBmk

ADVANCED PARSING

Some slides adapted from Dan Klein

Admin

- Assignment 2 grades e-mailed
- Assignment 3?
- Survey
 - Thanks for the feedback
 - NLP within AI

Parsing evaluation

- You’ve constructed a parser
- You want to know how good it is
- Ideas?
Parsing evaluation

- Learn a model using the training set
- Parse the test set without looking at the “correct” trees
- Compare our generated parse tree to the “correct” tree

Comparing trees

- Idea 1: see if the trees match exactly
 - Problems?
 - Will have a low number of matches (people often disagree)
 - Doesn’t take into account getting it almost right

- Idea 2: compare the constituents

Comparing trees

How many constituents match?
How can we turn this into a score?
Evaluation measures

- **Precision**
 \[\text{# of correct constituents} \]
 \[\text{# of constituents in the computed tree} \]

- **Recall**
 \[\text{# of correct constituents} \]
 \[\text{# of constituents in the correct tree} \]

- **F1**
 \[\frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \]

Comparing trees

- **Computed Tree P**
- **Correct Tree T**

I eat sushi with tuna

- # Constituents: 11
- # Correct Constituents: 9

- Precision: 9/11
- Recall: 9/10
- F1: 0.857

Parsing evaluation

- **Corpus**: Penn Treebank, WSJ
- **Training**: sections 02-21
- **Development**: section 22 (here, first 20 files)
- **Test**: section 23

- Parsing has been fairly standardized to allow for easy comparison between systems

Treebank PCFGs

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):

 Model

 Baseline

 F1: 72.0
Generic PCFG Limitations

- PCFGs do not use any information about where the current constituent is in the tree.
- PCFGs do not rely on specific words or concepts, only general structural disambiguation is possible (e.g. prefer to attach PPs to Nominals).
- MLE estimates are not always the best.

Conditional Independence?

- Not every NP expansion can fill every NP slot:
 - A grammar with symbols like "NP" won't be context-free.
 - Statistically, conditional independence too strong.

Non-Independence

- Independence assumptions are often too strong.

<table>
<thead>
<tr>
<th></th>
<th>All NPs</th>
<th>NPs under S</th>
<th>NPs under VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP PP</td>
<td>11%</td>
<td>9%</td>
<td>21%</td>
</tr>
<tr>
<td>DT NN</td>
<td>9%</td>
<td>9%</td>
<td>7%</td>
</tr>
<tr>
<td>PRP</td>
<td>6%</td>
<td>9%</td>
<td>4%</td>
</tr>
</tbody>
</table>

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated.

Grammar Refinement

- PCFG would treat these two NPs the same... but they’re not!
- We can't exchange them: "the noise heard she"
- Idea: expand/refine our grammar
- Challenges:
 - Must refine in ways that facilitate disambiguation
 - Must trade-offs between too little and too much refinement. Concerns:
 - Too much refinement -> overfitting problems
 - Too little -> can’t discriminate (PCFG)
Grammar Refinement

- Structure Annotation [Johnson '98, Klein&Manning '03]
- Differentiate constituents based on their local context
- Lexicalization [Collins '99, Charniak '00]
- Differentiate constituents based on the spanned words
- Constituent splitting [Matsuzaki et al. 05, Petrov et al. '06]
- Cluster/group words into sub-constituents

Ideas?

Less independence

We’re making a strong independence assumption here!

Markovization

- Except for the root node, every node in a parse tree has:
 - A vertical history/context
 - A horizontal history/context

Traditional PCFGs use the full horizontal context and a vertical context of 1
Vertical Markovization

- Vertical Markov order: rewrites depend on past k ancestor nodes.
- Order 1 is most common: aka parent annotation

Horizontal Markovization

- Horizontal Markov order: rewrites depend on past k ancestor nodes.
- Order 1 is most common: condition on a single sibling

Allows us to make finer grained distinctions

```
S
NP^S       VP
PRP VBD NP^VP
She heard DT NN
the noise
```
Example of Importance of Lexicalization

- A general preference for attaching PPs to NPs rather than VPs can be learned by a vanilla PCFG.
- But the desired preference can depend on specific words.

```
S → NP VP  0.9
S → VP    0.1
NP → Det A N  0.5
NP → NP PP  0.3
NP → Prop N  0.2
A → ε     0.6
A → Adj A  0.4
PP → Prop NP 1.0
VP → V NP  0.7
VP → VP PP  0.3
```

```
John put the dog in the pen.
```

Example of Importance of Lexicalization

- A general preference for attaching PPs to NPs rather than VPs can be learned by a vanilla PCFG.
- But the desired preference can depend on specific words.

```
S → NP VP  0.9
S → VP    0.1
NP → Det A N  0.5
NP → NP PP  0.3
NP → Prop N  0.2
A → ε     0.6
A → Adj A  0.4
PP → Prop NP 1.0
VP → V NP  0.7
VP → VP PP  0.3
```

```
John put the dog in the pen.
```
Lexicalized Trees

How could we lexicalize the grammar/tree?

Lexicalized Trees

- Add “headwords” to each phrasal node
- Syntactic vs. semantic heads
- Headship not in (most) treebanks
- Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N
 - Take right child
 - VP:
 - Take leftmost VP
 - Take left child

Lexicalized PCFGs?

- Problem: we now have to estimate probabilities like
 \[\text{VP(put) } \rightarrow \text{VBD(put) NP(dog) PP(in)} \]
- How would we estimate the probability of this rule?
 \[\frac{\text{Count(VP(put) } \rightarrow \text{VBD(put) NP(dog) PP(in))}}{\text{Count(VP (put))}} \]
- Never going to get these automatically off of a treebank
- Ideas?

One approach

- Combine this with some of the markovization techniques we saw
- Collins’ (1999) parser
 - Models productions based on context to the left and the right of the head daughter.
 \[\text{LHS } \rightarrow \text{L}_1\text{L}_2...\text{L}_i\text{H}\text{R}_1...\text{R}_m \]
 - First generate the head (H) and then repeatedly generate left (L) and right (R) context symbols until the symbol STOP is generated.
Sample Production Generation

Estimating Production Generation Parameters

- Estimate P_H, P_L, and P_R parameters from treebank data

 $P_H(VP_{put} | VP_{put}) = \frac{\text{Count(symbol right of head in a VP_{put} production)}}{\text{Count(symbol right of head in a VP_{put}VBD)}}$

 $P_L(NP_{dog} | VP_{put}) = \frac{\text{Count(symbol right of head in a VP_{put} production)}}{\text{Count(symbol right of head in a VP_{put})}}$

- Smooth estimates by combining with simpler models conditioned on just POS tag or no lexical info

 $smP_R(PP_{in} | VP_{put} -) = \lambda_1 P_R(PP_{in} | VP_{put}) + (1-\lambda_1) (\lambda_2 P_R(PP_{in} | VP_{VBD}) + (1-\lambda_2) P_R(PP_{in} | VP_{put}))$

Problems with lexicalization

- We’ve solved the estimation problem
- There’s also the issue of performance
- Lexicalization causes the size of the number of grammar rules to explode!
- Our parsing algorithms take too long too finish

Pruning during search

- We can no longer keep all possible parses around
- We can no longer guarantee that we actually return the most likely parse
- Beam search [Collins 99]
 - In each cell only keep the K most likely hypothesis
 - Disregard constituents over certain spans (e.g. punctuation)
 - F1 of 88.6!
Pruning with a PCFG

- The Charniak parser prunes using a two-pass approach [Charniak 97+]
 - First, parse with the base grammar
 - For each \(X[i,j] \) calculate \(P(X|i,j,s) \)
 - This isn't trivial, and there are clever speed ups
 - Second, do the full CKY
 - Skip any \(X[i,j] \) which had low (say, < 0.0001) posterior
 - Avoids almost all work in the second phase!

- F1 of 89.7!

Tag splitting

- Lexicalization is an extreme case of splitting the tags to allow for better discrimination

- Idea: what if rather than doing it for all words, we just split some of the tags

Tag Splits

- Problem: Treebank tags are too coarse
 - We even saw this with the variety of tagsets

- Example: Sentential, PP, and other prepositions are all marked IN

- Partial Solution:
 - Subdivide the IN tag

Other Tag Splits

- UNARY-DT: mark demonstratives as DT^U ("the X" vs. "those")
- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-canonical parents ("not" is an RB^VP)
- SPLIT-AUX: mark auxiliary verbs with –AUX [cf. Charniak 97]
- SPLIT-CC: separate “but” and “&” from other conjunctions
- SPLIT-%: “%” gets its own tag.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
<tr>
<td>SPLIT-IN</td>
<td>80.3</td>
<td>8.1K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPLIT-DT</td>
<td>80.4</td>
<td>8.1K</td>
</tr>
<tr>
<td>SPLIT-RB</td>
<td>80.5</td>
<td>8.1K</td>
</tr>
<tr>
<td>SPLIT-PA</td>
<td>81.2</td>
<td>8.5K</td>
</tr>
<tr>
<td>SPLIT-AUX</td>
<td>81.6</td>
<td>9.0K</td>
</tr>
<tr>
<td>SPLIT-CC</td>
<td>81.7</td>
<td>9.1K</td>
</tr>
<tr>
<td>SPLIT-%</td>
<td>81.8</td>
<td>9.3K</td>
</tr>
</tbody>
</table>
Learning good splits: Latent Variable Grammars

Parse Tree

\[
\begin{array}{c}
S \\
NP \\
PRP \\
VBD \\
ADJP
\end{array}
\]

Learned Splits

- Proper Nouns (NNP):
 - NNP-12: John, Robert, James
 - NNP-2: J., E., L.
 - NNP-1: Bush, Noriega, Peters
 - NNP-15: New, San, Wall
 - NNP-3: York, Francisco, Street

- Personal pronouns (PRP):
 - PRP-0: it, He, I
 - PRP-1: it, he, they
 - PRP-2: it, them, him

Learned Splits

- Relative adverbs (RBR):
 - RBR-0: further, lower, higher
 - RBR-1: more, less, More
 - RBR-2: earlier, Earlier, later

- Cardinal Numbers (CD):
 - CD-7: one, two, Three
 - CD-11: million, billion, trillion
 - CD-0: 1, 50, 100
 - CD-3: 1, 30, 31
 - CD-9: 78, 58, 34
Final Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>F1 ≤ 40 words</th>
<th>F1 all words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klein & Manning '03</td>
<td>86.3</td>
<td>85.7</td>
</tr>
<tr>
<td>Matsuzaki et al. '05</td>
<td>86.7</td>
<td>86.1</td>
</tr>
<tr>
<td>Collins '99</td>
<td>88.6</td>
<td>88.2</td>
</tr>
<tr>
<td>Charniak & Johnson '05</td>
<td>90.1</td>
<td>89.6</td>
</tr>
<tr>
<td>Petrov et. al. '06</td>
<td>90.2</td>
<td>89.7</td>
</tr>
</tbody>
</table>

Article discussion

- Smarter Marketing and the Weak Link In Its Success

- What are the ethics involved with tracking user interests for the purpose of advertising? Is this something you find preferable to "blind" marketing?

- Is possible to get an accurate picture of someone’s interests from their web activity? What sources would be good for doing so?

- How do you feel about websites that change content depending on the viewer? What are the implications of sites that behave this way?