
CS150 - Getting to know Matlab

This in-class lab will walk you through some of the functionality of Matlab. For more information
and resources, see the course web page.

1 Getting started

To start Matlab, type “command + spacebar” and then type “matlab” to search for matlab. The
icon for Matlab looks like:

Matlab has its own IDE (like R did). The IDE has a number of different parts to the window:

1

The center frame is the interactive shell (with >> as the prompt). This is where we will be typing
all of our commands. The left frame shows the files in the current working directory. The top
right shows all the active variables (to start with, none) and the bottom right shows the history of
commands typed.

2 Basics

Matlab’s behavior in the interactive shell is very similar to the behavior we’ve seen with R and
Python. Play with the shell some and try and discover the answers to the following questions:

• What mathematical operators does matlab support? (mod/remainder is not an operator, but
a function called mod)

• What does Matlab do when dividing two integers that don’t divide evenly?

• What is ans? Can you use it in an expression?

• How do you assign to a new variable? Notice that when you create new variables in the
workspace, they are displayed in the upper right frame.

• Statements can optionally be terminated by a semicolon (;). What difference does this make?

A few other things to try out with Matlab:

• To get help from Matlab type help <function>. Try getting the help for a few things (even
things like ans).

• Comments in Matlab are indicated by a % sign. For example, type:

>> x = 5 % this assigns 5 to x

Just like in Python, everything following the % is ignored

• Strings in Matlab are indicated with single quotes. What happens if you try to use double
quotes?

• To print out things to the screen, use the function disp. Notice that unlike Python, there
is a difference between printing/displaying a variable or expression and just typing it at the
terminal. How does disp(5) differ from just typing 5? If you want to get fancy, look at the
help documentation for sprintf.

• Notice that all of the commands that you type show up in the lower right frame “Command
History”. You can double click on any of these and it will rerun that command in the shell.

2

3 Matrices

The real power of Matlab comes from it’s ability to generate and manipulate matrices. All objects
in Matlab are matrices or special cases of them like scalars (1 by 1 matrices) and vectors (1 by n
or n by 1 matrices).

Creating matrices

There are lots of different ways that you can create matrices. Try out the ones below. Remember
that you can use help for the functions to figure out what they do:

• Just like Python, you can create a 1 dimensional row vector (i.e. a list) using square braces:

>>[1, 2, 3, 4, 5]

• You can also create a 1 dimensional column vector using square braces:

>>[1;2;3;4;5]

What is the difference between these two?

• Like R, we can use the : to create vectors representing a range of values:

>>2:20

If we want to use a different increment (other than 1), we can put in another colon:

>>2:.5:20

This can also include negative numbers if you want to count in the other direction:

>>20:-1:2

• Combining the techniques above for making row and column vectors, we can make a matrix:

x = [1, 2, 3; 4, 5, 6; 7, 8, 9]

• There are also a number of built-in functions for creating matrices:

– zeros

– ones

– rand

– eye

– magic

• You can create more elaborate matrices by combining simpler matrices. For example, what
would the following matrix look like:

>> [eye(2), zeros(2); zeros(2), eye(2)]

Once you’re comfortable creating matrices, try and create the following matrices with just a single
statement:

3

- A 10 by 10 matrix where each entry is 10

- The following matrix:

1 2 3 4 5 6 7 8 9 10

10 9 8 7 6 5 4 3 2 1

- The following matrix:

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

- The following matrix:

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

Matrix manipulation

Most operators and functions work over a matrix. Try these out and discover the answer to the
questions.

• indexing : You can access individual elements of a matrix or vector using parenthesis (). This
is one of the most common mistakes to make for Matlab vs. Python. If you try and use
square braces [], you will get an error. For vectors, you just specify an index. For matrices,
you must specify a row and a column, separated by a comma:

For vectors:

>> x = 5:-.5:2

>> x(3)

ans =

4

4

Does indexing start at 0 or 1?

For matrices:

>> x = magic(3);

>> x(2, 2)

ans =

5

If you index a matrix using just one index the indices start in the first column and work
down, then move to the top of the second column, etc. For example, the indices for the 3 by
3 matrix are:

1 4 7

2 5 8

3 6 9

Try it out on the magic matrix:

>> x = magic(3);

>> x(2)

>> x(5)

>> x(8)

• slicing : We can slice matrices just like in Python with the following differences:

- Slicing (like indexing) uses parenthesis

- You cannot use the one-sided colon to mean got to beginning or end (e.g. [1:]). How-
ever, you can use the keyword end when slicing to mean the end of the vector, e.g.
x(3:end), grabs everything from 3 to the end.

- You can slice rows and columns

See if you can figure out what the following would return and then check your answers by
typing them in:

>> x = 1:20

>> x(5)

>> x(4:end)

>> x(15:-1:5)

>> x = magic(3)

x =

5

8 1 6

3 5 7

4 9 2

>> x(1:2, :)

>> x(:, 1:2)

>> x(1:2, 1:2)

>> x([1, 3], :)

>> x(2:end, 3)

>> x(:)

>> x(1:2)

>> x(5:end)

• size/length: The length function returns the number of elements in a vector. The size

function returns two values, the number of rows and columns of a matrix or vector. What
does length return on a matrix? What does size return on a vector?

You can “unpack” the values returned by size in a similar way that we do in Python (except
size returns a matrix instead of a tuple):

>> [nrows, ncols] = size(x)

• math operators: All of the math operators work an entry at a time if you apply some operator
between a matrix/vector and a scalar. Try multiplying, dividing and subtracting scalars from
matrices and vectors.

• matrix math: Try subtracting or multiplying two matrices together. Do they do what you
would expect?

>> x = ones(3)

>> x - x

>> x * x

When multiplying two matrices, Matlab does matrix multiplication (not element-wise multi-
plication). If you want element-wise multiplication use .*:

>> x = ones(3)

>> x .* x

Similar “dot” operations exist for ^ and /.

• transpose: Often we want to transpose a matrix (or vector), that is, make the rows the
columns and the columns the rows. In Matlab, this is done with the ’ operator, which is put
after a matrix or vector. Try out the following:

>> x = [1, 2, 3]

>> x’

>> magic(3)

>> magic(3)’

6

Note: You won’t be able to copy and paste these since the single quote doesn’t copy and paste
right. Just type them in.

• misc. functions: Matlab has a number of other built-in functions that are useful. Figure out
what they do and answer the questions below:

– max: How can you get the max of a matrix? (There are actually multiple ways of doing
this)

– mean: How can you get the mean of a matrix?

– sum: The rows, columns and diagonals of a magic matrix should all sum to the same
number. Verify this for yourself.

– sqrt

– And many more ...

4 Control Structures

Matlab has all of the control constructs that we’ve seen in other languages (if/else, for loops and
while loops). Matlab does NOT use indenting to denote a block of code like Python nor does it
use braces like R. Instead, Matlab uses the end keyword to denote the end of a block. For example:

if x > 0

% do something here if x > 0

end

% do something here regardless of whether x > 0 or not

As with R, we will still indent the code to make it more readable.

Below are some of the other differences for each of the control constructs

• if/else

– if by itself:

if x > 0

% do something here if x > 0

end

% do something here regardless of whether x > 0 or not

– if/else statement:

7

if x > 0

% do something here if x > 0

else

% do something if x > 0 is not true

end

% do something here regardless of whether x > 0 or not

Notice that the else terminates the if block and the end terminates the else block.

– if/elseif/else

if x > 0

% do something here if x > 0

elseif x < 0

% do something if x < 0

else

% do something if none of the if/elseif statements are true

% this part is optional, though we’ll commonly include it

end

As with the if/else statements, the elseif acts as a block terminator.

• while

While works just like it does in Python except it is terminated by an end.

while x > 0

% do something as long as x > 0

end

Matlab has variables true and false to represent true and false. However, Matlab does not
actually have a boolean type. Instead true and false are just numbers. Try and figure out
what exactly represents a true value and a false value.

• for

The for loop is similar to Python except instead of the keyword in we use =. As with R, we
don’t need to use a function like range, since we can use the colon operator. For example, to
print out the numbers 1 through 10:

for i = 1:10

disp(i)

end

Like our other constructs, we terminate the for loop block with the end keyword.

Like R, loops tend to be much slower than doing manipulations over vectors or matrices, so
it’s generally a good idea to avoid loops if you can.

8

5 Logical expressions

Matlab has all of the standard boolean logic operators we’ve seen and a few others:

• && (instead of and)

• || (instead of or)

• & and applied to a vector or matrix

• | or applied to a vector or matrix

• ~ (instead of !)

• any

• xor

• all

Look up these last three using help

What would the following return (and why)?

>> 10 & 1

>> 10 && 1

>> 1 && ~1

>> true && false

>> true || false

>> true & ones(1,10)

>> ones(1,10) & ~zeros(1,10)

>> true && ones(1,10)

Notice that && and || can only be applied to scalars.

Like in R, we can apply the comparison operators (>, >=, <, <=, ==, =) to a matrix:

>> x = magic(3)

>> x > 3

>> x == 4

Try and write statements that do the following:

- Count how many elements in a 5 by 5 magic square are greater than 5

- Generate 5 random numbers using rand and see if they were all greater than 0.1. The
statement should return 1 if they are all greater than 0.1 or 0, otherwise. (note there are
multiple ways of doing this).

9

- Generate 5 random numbers using rand and see if any of them are greater than 0.9. The
statement should return 1 if any one of them is greater than 0.1 or 0, otherwise.

- Out of 100 randomly generated numbers between 0 and 1, count how many are less than 0.2.

- Out of 100 randomly generated numbers between 0 and 100, calculate the sum of all of
the numbers that are greater than or equal to 50. First, generate the random number vec-
tor/matrix and then get the sum as two separate statements. Hint: the .* operator might be
useful.

6 The working directory

Like R, Matlab has a current working directory where it looks for files you’ve written. The nice
thing about Matlab is that it uses all of the same commands to navigate around as those we used
in the terminal:

>> pwd

ans =

/Users/dkauchak/Documents/MATLAB

>> ls % I don’t have any files in this directory

>> cd .. % move up a directory

>> ls

2010juniors.rtf

CourseProposalForm.cs159.docm

EAAI-scholarship.2011.docx

EAAI-scholarship.David.Kauchak.11.pdf

EAAI-scholarship.docx

... % there were more, but I’ll omit them

When you change directories, you’ll also notice that the left frame will be updated to show the
contents of the directory.

Change directories so that you’re on your Desktop.

You can create a new directory/folder (both in Matlab and in Terminal) with the mkdir command
(short for make directory):

>> mkdir matlab

>> cd matlab

Now your working directory should be in a folder called matlab on your Desktop. Just FYI, if you
want to remove/delete a directory, use the rmdir command, however, the directory must be empty.

10

