
CS150 - Assignment 8

Zipf’s Law

Due: Wednesday Nov. 9, at the beginning of class

George Kingsley Zipf was a linguist who noticed an interesting phenomenon regarding the fre-
quencies of words in a corpus (collection of documents). For almost any corpus the frequency of
the occurrence of a word (i.e. how many times it occurs) is inversely proportional to the word’s
frequency rank in the corpus:

word frequency ∝ 1

word rank

For example, the most frequent word (word rank = 1) generally occurs twice as many times as
the second most frequent word (word rank = 2), etc. The graph below shows a graph of the word
frequencies, sorted by rank/frequency, from Moby Dick :

This phenomenon tends to show up not only in text data, but in a variety of naturally occurring
data ranging from search engines queries to connections in a social networks. This phenomena is

1



so predominant that is has be coined Zipf’s law. In this lab, we will be playing with one corollary
of Zipf’s law.

For this assignment you are allowed (and encouraged) to work in pairs. If you do, you must do all
of the work together. Only turn in one copy of the assignment, but make sure both of your names
are in the comments at the top of the file.

1 Zipf’s law take two

One of the corollaries of Zipf’s law is that if you count the number of words that occur just once,
twice, three times, etc. in a corpus and plot them, you see a similar distribution to that above.
This is because there are lots of words that occur just once, a few less that occur twice, even less
that occur three times, etc. For example, here is a plot of this from some data:

Here the x-axis represents the words that occur x times in the corpus. For example, in the graph
there are just a few hundred words that occur 50 times in the corpus (i.e. y ∼ 200 where x = 50).
We see from the graph, that there are lots of words that occur just a few times and very few words
that are occur many times.

2



2 The program

For this lab, you will be writing a program that reads text data from a file and generates two things
based on the words in the file:

• a graph like the one in the previous section (2nd graph NOT the first) plotting the number
of words that occurred once, twice, three times etc. in the file

• a printed list (i.e. printed using print) of the 10 most frequent words in the file in order of
frequency along with each word’s frequency

When the program starts it should ask the user to enter the name of a file. It should then count
the frequencies of the words in this file and generate a graph using matplotlib with appropriate x
and y labels and title as well as print out the 10 most frequent words.

For example, given the file:

the dog is here

the dog is not here

dog good

dog sometimes not good

i like dogs

The program would produce the following graph:

3



and print out the following list of words:

The 10 most frequent words are:

dog 4

good 2

is 2

here 2

not 2

the 2

like 1

i 1

sometimes 1

dogs 1

There are 4 words that occur once (“like”, “i”, ”sometimes” and ”dogs”), 5 words that occur twice
(“good”, “is”, “here”, “not” and “the”), no words that occur three times, and 1 word that occurs
four times (“dog”), so the plot has the values x = [1, 2, 3, 4] vs y = [4, 5, 0, 1].

3 The implementation

For this lab, I am giving you a fair amount of control over how you accomplish the program above.
As you design and implement it, think hard about how you can break up your program into smaller
functional units (i.e. functions) and how the functions will interact. An important component of
your grade for this lab will be based upon how well you do this.

4



Some hints/suggestions

• When you call show() the program waits until you close that window to continue. If you’ve
tried to print out text it will not show until you close the plot window if you are running the
program with the green arrow (or from the shell). If, however, you run it using the debug
mode, it will behave as you’d expect.

• Your first step will be to read the file and store how often each word occurs in the file

– Dictionaries are a natural way for calculating and storing this information

– Recall that the split method in the string class can be called on a string and gives a
list of the words in that string separated by a space

• Once you have a dictionary of words with their frequencies you’ll need to use this to calculate
the two pieces of information your need to output:

– To generate the graph, you’ll need to count how many words occurred once, twice, three
times, etc.

∗ This will require a traversal of your dictionary from words to word counts to generate
a new set of counts. You’ll probably need another dictionary here, though there are
other ways of doing this.

∗ Be careful to make sure that you add in at some point the zero count events. In
our toy example above, there were no words that occurred 3 times, but we would
still like to associate 0 with the entry 3. You can either do this when you aggregate
these counts or as a post processing step.

– To get the ten most frequent words, you’ll need to get the words in a dictionary whose
values are largest. There are two ways of doing this. The first way, is to sort the keys
(words) by value and then extract the top ten. The book suggests one way of doing this,
but it can be complicated (you’ll get 1 point of extra credit for doing it this way).

However, another way to do this is to do the following ten times:

∗ Find the largest key/value pair in the dictionary (this should feel similar to one of
the homework problems from Wednesday)

∗ Remove that key/value pair from the dictionary. The del command deletes a key
from a dictionary, for example:

>>> my_dict = {"banana": 10, "apple": 15}

>>> my_dict

{’banana’: 10, ’apple’: 15}

>>> del my_dict["banana"]

>>> my_dict

{’apple’: 15}

One thing to note about with this approach is that it does modify the dictionary, so you
need to be careful you’re not using the dictionary somewhere later. You can either make
sure you don’t need to use the dictionary after doing this, or you can create a copy of
the dictionary using one of the dictionary classes constructors:

5



>>> my_dict = {"banana": 10, "apple": 15}

>>> dict2 = dict(my_dict)

>>> dict2

{’banana’: 10, ’apple’: 15}

Notice that these two are copies and not references to the same dictionary:

>>> del dict2["banana"]

>>> dict2

{’apple’: 15}

>>> my_dict

{’banana’: 10, ’apple’: 15}

4 Data

I’ve posted a few different data set for you to try your program on at:

http://www.cs.middlebury.edu/~dkauchak/classes/midd_only/cs150/assignment8/

“green.txt” and “fox.txt” are the text from two Dr. Suess books and “sentences.txt” is a file
containing 10,000 sentences from Wikipedia. Try out these different files and see what the data
looks like.

“sentences.txt” is a much larger file and will therefore have some very frequent words that will force
your graph to have fairly a large x maximum. If you just look at the graph this as is, you won’t
see much on the graph since all the interesting information is lost by these large magnitudes. To
see this picture better, you can use the “zoom in” tool in the matplotlib window to zoom in on
the lower left corner or you can modify your script to discard some of the higher x values (if you
do this later approach, don’t forget to change it back when you’re done).

5 Extra credit

You may earn up to 2 points of extra credit on this assignment. Below are some ideas, but you
may incorporate your own if you’d like. Make sure to document your extra credit additions in
comments at the top of the file.

• Sort the dictionary of counts to find the 10 most frequent words

• Include a function to generate a plot of word verses frequency where the words are sorted by
frequency from largest to smallest

• Print out other statistics about the words in the file

6



6 When you’re done

http://xkcd.com/451/

Make sure that your program is properly commented:

• You should have comments at the very beginning of the file stating your name, course (in-
cluding section number), assignment number and the date.

• Each function should have an appropriate docstring

• Other miscellaneous comments to make things clear

In addition, make sure that you’ve used good style

Submission procedure

For this assignment submit your code digitally online at:

http://www.cs.middlebury.edu/~dkauchak/classes/cs150/submission/

Enter the relevant information and upload your file. If you have problems with this, please let me
know. This link can also be found in the “Resources” section of the course web page at the bottom.

7



Grading

points

word frequencies 3
word occurrence counts 3
print top 10 words 4
plot: looks correct 4
plot: labels, etc 2

code organization 2
Comments, style 4

Lab prep 3

extra credit 2

total 25 (+2)

8


