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Abstract

This project tested four keystroke analysis strategies and
their effectiveness for a practical implementation of keystroke
dynamics. A web based keystroke analysis system was im-
plemented and a total of 70 participants were involved with
the experiment. We designed a new method of typing data
storage that is less storage intensive than previous studies.
Error rates for each analysis was graphed out across 1000
thresholds so we could see how sensitive each strategy was to
threshold adjustments. This method of graphing error rates
is something that we have not seen in any previous studies
and is something we believe future research should consider
because it is significantly more informative than simply just
reporting the best possible False Alarm Rate (FAR) and Im-
postor Pass Rate (IPR).

The results of the experiment indicated that the ratio method
is the strategy with the lowest error rates. It could achieve
a False Alarm Rate (FAR) of 4.29%, an Impostor Pass Rate
(IPR) of 3.37%, and a classification error rate of 18.57%. We
also concluded that the ratio method is the best keystroke
analysis strategy to use in a practical implementation be-
cause it is the least sensitive to threshold adjustments.

Our method of typing data storage was sufficient though it
may have accounted for some of our high error rates. The
slightly higher error rates than previous studies is likely due
to the fact that typing behavior information is lost when we
convert raw timing information into our data structure.
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Chapter 1

Introduction

The ubiquitous computer systems in our society today have become the
guardians of an exponentially increasing collection of information. A signif-
icant portion of this data is often sensitive and should only be accessed by
authorized individuals. Keystroke dynamics has often been suggested as a
method to harden current authentication schemes because it does not need
expensive hardware and has been shown to be a feasible biometric system.
The goals of this project was to review previous work done on keystroke
dynamics, examine the existence of “global” typing patterns, test a method
of data representation, and to identify the ideas that would be best suited
for a practical implementation of a keystroke authentication system.

1.1 Authentication: The Current Situation

Current security solutions have been traditionally categorized into the three
factors of something the user has (usb token, mobile phone), something the
user knows (password, social security number), and something the user is
(biometrics). The most widely implemented of these three has been pass-
word authentication systems. Password systems benefit from low imple-
mentation costs and effectiveness in terms of accuracy (a password is either
correct or wrong). However, passwords are plagued by several inadequa-
cies and numerous effective methods are available for attacking passwords.
[Bis03].

None of the three factors are flawless and this has led to the adoption of
two-factor authentication systems by groups where security is a top priority.
In fact, The U.S federal government has already recognized the weakness of
single-factor authentication and recommends that banks adopt some form
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of two-factor authentication[Cou]. Of the three factors, biometrics offers the
most promise yet has been slow in it’s adoption. This is due to high costs
associated with biometrics and the lack of standardization [Pol97]. Further
work needs to be done to lessen the gap between biometrics in theory and
biometrics in practice. The results from this project will hopefully aid in
this goal.

1.2 Keystroke Dynamics

Within in biometrics, there are the two categories of physiological (fin-
gerprints) vs. behavioral (handwriting) [Pol97]. Keystroke dynamics falls
within the category of behavioral biometrics. The idea behind keystroke
dynamics is that people have different typing styles and by analyzing the
timings of keystrokes, a person can be identified. A benefit of this metric is
that measuring keystrokes can be done through a keyboard, thus negating
the cost of typical physiological biometric systems which require expensive
hardware to measure physical attributes.

1.3 Goals

The first goal was to compare the effectiveness of numerous metrics sug-
gested in previous research and to determine which one is the most success-
ful. Each of these metrics was modified to use our data representation. A
review and comparison needed to be done because numerous studies claimed
high success rates but the studies varied significantly on how they collected
the data and how they “preprocessed” the data before analyzing it. Addi-
tionally, several of the studies were conducted under conditions that were
controlled and therefore their results may not be replicated when applied
to a different environment. A more detailed review of past studies can be
found in Chapter 2. The experiment in this paper involved collecting typing
samples from 70 users.

The second goal was to examine the existence of “global” typing pat-
terns. We tested this by performing tests on free text. The third goal was
to test a method of data representation. Previous studies stored each typing
sample individually. While this may be OK in an experimental setting, in
the real world this would mean that the typing data for a user would con-
stantly be increasing as time goes by. We used our own original method of
representing typing samples that reduced keystroke timings into a constant
sized reference profile. The last goal was to focus on ideas for a practical au-
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thentication mechanism. Our experiment was designed to be more realistic
and practical in it’s data collection and practicality was also our key criteria
in analyzing the different authentication methods. A detailed explanation
of our experimental and analysis methods can be found in Chapter 3 and
Chapter 4. We hope that the results from this study will contribute to the
development of practical and effective keystroke dynamics authentication
systems.

3



4



Chapter 2

The History of Keystroke
Dynamics

This chapter uses several keywords that are considered common knowledge
for most researchers involved in computer security and keystroke dynamics.
A glossary of these words is included at the end of this paper in Appendix A
if the reader needs clarification on any of the terms used in this chapter.

2.1 1980-1989: The First Studies

The pioneering research done in keystroke dynamics dates back to the Rand
report in 1980 [GLPS80]. Inspired by the idea that that individuals have
unique rhythms when they sent telegraphs, the U.S government funded re-
search to study if this same behavior was exhibited by people using a com-
puter keyboard. It is from this preliminary study that the concept of a
digraph was described. A digraph is a pair of two keystrokes and the time
elapsed between the typing of the first and second keystroke. The study
recorded digraph measurements for the participants and measured: mean,
variance, kurtosis, and variance. A simple t-test was used to classify a user.
The statistical analysis indicated that keystroke analysis was definitely a fea-
sible biometric. While the authors of the Rand report were able to achieve
100% success rate in classification, many researchers argue that this is in-
significant due to fact that only 7 test subjects were involved in the study
and that a significant amount of fine tuning of their metric had to be done
(over-fitting).

After the Rand report, more experimental studies were conducted that
confirmed the relevance of digraphs in identifying user typing signatures. In
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1985, Umphress and Williams conducted a more thorough experiment and
gave more credence to the idea that keyboard dynamics was viable [UW85].
This was followed by a study in 1988 done by Williams and Leggett and
a 1989 study done by Umphress, Williams, and Leggett [LW88] [LWU89].
These studies used statistics to compare a claimant typing sample against a
reference profile in order to classify users. For example, one of the methods
was to calculate the standard deviation of all the digraphs. When compar-
ing a claimant sample against a reference sample, each claimant digraph was
checked to see if it was within .5 standard deviations of the reference digraph.
If this was true, then the digraph was considered “valid”. If the claimant
sample had more than 60% valid digraphs, the user would be authenticated.
The important conclusions from these studies were that: digraphs were con-
firmed to be a good measure of keystrokes, mean digraph time (essentially
typing speed) was determined to be not useful in classification, removing di-
graphs more than 500 milliseconds seemed to be a good method of removing
outliers in typing samples, and using all the digraphs yielded better results
than using specific digraphs for classification.

It is around this time that the first patents were granted for keystroke
dynamics. Garcia’s 1986 patent described a scheme where users typed their
names in order to authenticate [Gar86]. The rationale is that this will be easy
to remember and users will hopefully exhibit more consistent digraphs when
typing something familiar. An interesting idea proposed in the patent was
the use of a vector of mean keystroke latencies (digraphs) as a reference. The
Mahalanobis distance function was then used to compare a claimant vector
against the reference vector. If the distance calculated is greater 100, the
claimant vector is rejected and if the distance was less than 50, the claimant
vector was accepted. A distance in between 50 and 100 would prompt the
claimant to type the sample again. Garcia’s patent also described a system
where users are asked to type 1000 of the most common words 10 times to
generate a reference profile and users are then given randomly generated
phrases when they want to authenticate. This idea is a clear extension
of Garcia’s claim that keystroke dynamics should involve words that are
familiar to users. However, it would be impractical to implement.

Three years later, a patent was granted to Young and Hammon for their
description of a keystroke authentication method [YH89]. This patent men-
tions the use of keystroke latencies and keystroke pressures as important
measurements of keystroke behavior. The authentication method incorpo-
rated the use of a reference vector of digraphs similar to Garcia’s idea.
However, Young and Hammon chose Euclidean distance as the measure of
similarity between claimant and reference vectors.

6



Many of the researchers in keystroke dynamics have adopted/adapted
the methods described in these two patents. Most of the experiments con-
ducted since 1990 involved storing digraph measurements into vectors and
determining a way of measuring “distance” between a claimant and reference
vector. The user whose reference vector that had the shortest distance from
the claimant vector was the user that was identified as being the claimant.

2.2 1990-1999: Practical Keystroke Authentica-
tion and Neural Networks

After the first studies concluded that keystroke authentication was feasible,
researchers begin designing experiments that would make keystroke dynam-
ics a more practical tool. The two goals were to shorten the amount of
typing input needed from the users and to further lower the False Alarm
Rate (FAR) and Impostor Pass Rate (IPR) [JG]. Previous studies required
users to submit typing samples as large as 537 characters [UW85]. The Rand
report study had a FAR of 4% and IPR of 0% and was able to reduce both
to 0% with some fine tuning of their metric [GLPS80]. However, when other
researchers repeated the methods described in the Rand report, they were
only able to achieve a FAR of 30% and a IPR of 17%[UW85]. It was clear
that some of the previous research suffered from the problem of over-fitting.

In 1990, Joyce and Gupta set out to address some of the issues men-
tioned above [JG]. They stated that IPR should ideally be below 1.0% and
an FAR of 5% and below was acceptable. Their experiment only used a
person’s username, password, and 2 short sentences for sampling a user’s
typing style. A FAR of 6.67% and IPR of below 1% was achieved by simply
using the Euclidean distance measurement between reference vectors and
claimant vectors. This was close to what Joyce and Gupta had hoped to
achieve and they believed that while authentication may be hard to imple-
ment, keystroke dynamics could easily be implemented as a safety device for
detecting intoxicated or tired users.

Brown and Rogers also decided to take a more practical approach in
their 1994 study on keystroke authentication [BR94]. Their research was
also the first to examine the use of neural networks as a method of classi-
fying claimant vectors. The experiment only used typing samples that were
15 characters long and they were able to achieve FAR between 12.0% and
40.9%. They purposely chose to tune their metrics to have a 0% IPR because
they argued that minimizing the number of intruders is far more important
than annoying the user with false alarms. For comparison, they also tried
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using Euclidean distance and came to the conclusion that it did not perform
any better than a neural network. Brown and Rogers favored the develop-
ment of a neural network authentication mechanism because they believed
that such an implementation would be trivial.

There are many points that we disagree with Brown and Rogers on.
First, having an IPR of 0% is ideal but not practical if it results a FAR
of 40.9%. The standards set by Joyce and Gupta were far more realistic
[JG]. Additionally, there are several aspects of neural networks that make
them less ideal for practical use. In the work described by Brown and Rogers,
several different types of neural networks were trained with a set of authentic
user typing samples and a large set of impostor typing samples. One neural
network was then designed to take in a typing input and output a 0 for
rejecting and 1 for accepting the input as valid. A second one was designed
to output a number between 0.0 and 1.0, representing the likelihood that
the input was valid. All of these designs are impractical because the cost of
implementation is substantial. Training the neural network is costly, and so
is the creation of a large set of impostor data. The addition of a user would
also require additional retraining of the neural net. Finally, these neural
nets were only performing classification and were not addressing the harder
problem of authentication/identification.

Monrose and Rubin recognized the shortcomings of both neural networks
and statistical/mathematical strategies [MR97]. They recommended that to
mitigate the cost of constant retraining of neural networks, users can be bro-
ken up into smaller groups with one neural net for each group. Mathematical
methods which require the storing of numerous reference profiles may suffer
from long search times. Monrose and Rubin addressed this issue by cluster-
ing user profiles by typing speed. The two key contributions of their study
was a) the idea of using keystroke durations as an additional measurement of
typing behavior and b) the conclusion that certain people exhibited unique
typing behaviors even when typing “free text”. Their overall results were
average and they used implementations described in previous work.

Around the same time Monrose and Rubin were conducting their study,
Obaidat and Sadoun were also conducting studies on keystroke dynamics
[OS97]. Obaidat and Sadoun conducted numerous experiments comparing
the effectiveness of neural networks versus mathematical methods. They
also looked at the effectiveness of keystroke durations as an identifier. The
experiment confirmed that keystroke durations were an useful measure and
could potentially be better than keystroke latencies. The best results were
when both keystroke durations and keystroke latencies were used. Obaidat
and Sadoun also achieved a 0% error rate on one of their neural networks
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and a FAR of 1.9% and IPR of 0.7% using vector distance measurements.
While these results are impressive, we are skeptical because the experiment
only tested classification and re-testing of these methods may not yield the
same results.

Robinson et al. confirmed the idea that keystroke duration times is a
superior measure than keystroke latency times [RLCM98]. Their research
also took a practical approach by collecting “real” typing data from several
students typing in their login ids. They compared the effectiveness of three
different statistical classifiers and the best was able to achieve a FAR of 10%
and an IPR of 9%. We find these results to be quite impressive given the
small amount of typing data they were working with.

2.3 2000-Present: New Ideas and Commercial Prod-
ucts

The most recent research in keystroke dynamics has led to the development
of interesting new strategies and we are now seeing commercial products that
are using keystroke dynamics as a supplemental form of authentication.

In 2000, researchers began looking into ways to make neural networks
more practical. Cho et al. attempted to make neural networks classify users
correctly without the need for a large set of impostor typing data [CHHK00].
The need for impostor data was seen as expensive and also unrealistic; Any
person attempting to attack the authentication system would most likely
not have submitted a sample of the their typing for the neural net to train
on. When the neural networks receive typing data from a claimant who’s
data they have not trained on, the results are unpredictable. Cho et al.
devised a neural network strategy that focused on “novelty detection”. The
neural network is trained on only authentic typing data and when a claimant
vector was submitted, it would identify if the data was significantly differ-
ent than the data it had trained on. Too many“novelties” would result in
a rejection of the claimant. The researchers used short passwords for their
typing samples and compared the effectiveness of using a statistical classi-
fier (nearest-neighbor algorithm) versus their neural network classifier. The
neural network outperformed the statistical classifier with a FAR of 4% and
IPR of 0%.

Betchel, Serpen, and Brown in their 2002 research also used a neural
network implementation that only relied on typing data from authentic users
[BSB02]. While they did not improve over previous rates, their research
furthered strengthen the idea that neural nets could be successful with out
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the need for impostor data. Their paper also recognized that previous neural
networks studies which had achieved 100% success rates were flawed because
of the large amount of typing samples taken from each user and fine capture
resolutions of 0.0001 seconds. These attributes most likely allowed the neural
networks to become extremely good at classifying but not as successful for
authentication.

Besides new advancements in neural network implementations, new uses
for keystroke dynamics were being tested in 2002. Monrose, Reiter, and Wet-
zel proposed a idea for hardening passwords using keystroke data [MRW02].
While this study does not directly relate to our study, it is an important
study that shows how keystroke dynamics can definitely be used practically
to aid in authentication.

A third study conducted in 2002 also contributed a new idea for improv-
ing keystroke dynamics. Bergadano, Gunetti, and Picardi suggested the
idea of using a relative measure instead of an absolute measure [BGP02].
Not only did this study have a significant number of participants (154 vol-
unteers), it also had impressive results of a FAR of 4% and IPR of 0.01%.
Their explanation of the metric and rationale of methods convinced us that
these results could be replicated. The strategy was to take the reference
vector of trigraph timing measurements and then sort them in order of
shortest to longest trigraph timing. A claimant vector is also sorted in the
same method and then the vector disorder distance is calculated from the
reference vector. Authentic claimant vectors consistently had significantly
smaller distance measurements than impostor vectors. The rationale behind
this method is that by sorting the vectors and computing vector disorder,
absolute keystroke timings become less significant and relative keystroke
timings become more important. For example, while users may not always
type the trigraph “abc” consistently, they are likely to consistently type
“abc” faster than certain trigraphs and slower than other trigraphs. Tri-
graphs were used because the researchers tested both digraphs and trigraphs
and trigraphs yielded better results.

Gunetti and Picardi then continued to test this idea of relative measures
and it’s effectiveness on free text analysis [GP05]. Free text analysis was
considered to be an important area to study because previous research had
always had participants submit typing samples in very controlled settings.
For their study they used both relative and absolute measures to analyze the
typing vectors. Relative measures was determined to be better than absolute
measures and using both seemed to achieve the best results. With their 205
volunteers that submitted free text samples of roughly 800 characters, they
reported FAR of less than 5% and IPR of less than 0.005%. The paper also
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carefully outlined the differences between classification, authentication, and
identification and described how their metrics could be used to address all
three problems. Based on the success of this study, we are convinced that
users typing free text also exhibit unique typing styles. This information
may be useful in implementing dynamic authentication.

The work done by Bergadano, Gunetti, and Picardi in 2002 and 2005 are
the most successful and most well implemented experiments in our opinion.
As far as we are aware of, no recent research has improved on their results.
However, more recent research has now tried to improve the consistency
of user typing. Hwang, Lee, and Cho argue that the quality of the typing
samples used to create the reference profiles are more important than the
quantity of typing samples [HLC06]. In their study, they tried using artifi-
cial pauses and cues in order to improve consistency and therefore improve
keystroke authentication overall. We are not convinced that this idea might
not be practical despite the low error rates.

Examining the current state of keystroke dynamics research as of the
writing of this paper, we see that keystroke dynamics is already viable
enough to be used in commercial products as a supplement to traditional
password authentication. Biopassword, mentioned by several of the studies
we reviewed, is now marketing such a product [CMD+]. There is still a lot
of debate on whether or not “global” typing patterns exist for users or if
typing patterns only exhibit themselves in controlled situations. The most
recent patent granted for keystroke dynamics was in April 2007 and the the
authors of the patent argue that global patterns do not exist and that any
viable keystroke authentication system must have controlled typing situa-
tions [PB07]. Meanwhile, new studies are now examining the feasibility of
using keystroke dynamics on mobile phone devices [CF07] [KC07]. Initial
results are promising with EER of around 12.8%.
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Chapter 3

Data Collection

The keystroke logging system was implemented using Adobe Flex R© Builder.
A flash application was created and hosted on the web to give users a conve-
nient and accessible way of submitting typing samples. Appendix B contains
supplemental info on the details of this application.

3.1 Collecting Data

Due to the sensitive nature of keystroke logging, participants were first di-
rected to an introductory page where they were told exactly what data was
being logged. If they consented they clicked the continue button to launch
the flash application. Users were asked to input their name and were then
directed to an instructions page where they were given an overview on how
the experiment was being run.

Part 1 of the data collection involved collecting user typing data when
the text used is predefined. The writing samples that were used in this
part of the data collection was a collection of 50 Homer Simpson quotes. A
large amount of typing data needed to be recorded in order to create good
reference profiles. However, this required users to be typing for a significant
amount of time. We hoped to make the experience more bearable by having
interesting/humorous writing samples. The typing samples totaled 4000
characters.

The data logged were: key that was pressed, time the key was depressed,
and time the key was released. The time recorded was the amount of time
passed since the start of the application and the unit of measurement was
milliseconds. The data structures used to store this data were two vectors
of tuples. One vector was for all key depressions and the other was for key
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releases. Tuples were in the form of (time,key-code).
Once a user finished typing, all the data that was logged was first inserted

into a MySQL database and then an email was sent to notify us that a
successful writing sample had just been inserted. If an error had occurred
anywhere in this process, the error message would be caught and sent via
email.

A second part of the data collection involved inviting a subset of the users
back to submit a sample of free text. These users were asked to submit
a 350 character typing sample about their favorite movie, food, or book.
One of our criticisms of the previous studies in keystroke authentication is
that many of the tests were too controlled in the data collection. Ideally a
reference typing profile can be created from text A and a different text B will
still exhibit the same typing behavior as text A. The point of the free text
data collection was so we can test typing from an less controlled situation.
The results from the free text analysis would also allow us to examine the
possibility of “global” typing patterns.

A total of 70 users submitted complete typing samples and 11 of these
users also submitted a free text sample.

3.2 Preprocessing Data

After all the data collection was done, we began preprocessing the typing
data so it could be used for analysis.

Three separate data structures were created for use. Data structure 1
was the reference profiles, Data structure 2 was the claimant samples, and
Data Structure 3 was the free text samples. Each vector stored user typing
entries in the data structure that is illustrated in Figure 3.1.
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Figure 3.1: Schema of the Typing Data Structure

Looking at Figure 3.1 we see that for every user, we record their user-
name and then have a profile vector of their key latency and key depression
timings. The timing data is stored in the form of (X, timing, numberOfX)
where X is the digraph or keystroke and timing is the average timing mea-
surement of that keystroke. The third value represents the number of X
timing measurements were used to calculate the average. By keeping track
of this value, it allows us to easily update the timing measurements when
we take in new typing samples and there is no need to keep track of separate
typing samples.

For example, if we already have the timing data for the digraph “aa” as
(“aa”, 232.5, 4) and we were to take in a new timing measurement for “aa”,
we would update by performing the following calculation: newAverageT iming =
(232.5 ∗ 4) + newTiming/(4 + 1). The new entry will then be (“aa”, newA-
verageTiming, 5).

For each user in our database, we divided up their typing data in half.
The first 25 quotes (2126 characters) that they typed were used to populate
the entries for the reference profile vector. The remaining 25 quotes (1874
characters) were used to populate entries for the claimant samples vector.
Finally, the free text vector was populated with the free text typing samples.
In populating the timing data, we did some minimal preprocessing to remove
potentially invalid data. Similar to previous studies, we set a maximum
digraph time so long timing measurements due to pauses in typing are not
recorded. The maximum time we set was 500 milliseconds and this was
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based on the findings of Leggett and Williams[LW88]. Additionally, we set
a minimum digraph time of 1 millisecond. This was because we noticed that
we occasionally had timing measurements of 0 milliseconds for digraphs such
as “cv”. We attribute this as a typo because the letters “c” and “v” are
next to each other and the 0 millisecond timing measurement occurs when
the user accidentally hits both keys at the same time when they meant to
only press one of them.After we populated the vectors and preprocessed the
data to remove invalid entries, we were ready to begin testing.
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Chapter 4

Analysis Methods

Previous experiments concerning keystroke dynamics have found a large
number of statistical strategies to be successful. While experiments differ
on what statistical tools were used, the essential idea from all of them is the
creation of a reference profile for every user and a method of comparing a
submitted sample with a profile. The creation of the reference profile vector
is described in Chapter 3. In this chapter, we describe the four analysis
methods we use to compare claimant samples against the reference profile
and the measure of success we used to rate each of the analysis methods.
One thing to note is that in our discussion we only mention comparing
digraph timings. Key latency comparisons are done the same way as digraph
comparisons so we do not mention them in order to reduce redundancy.

4.1 The Standard Deviation Method

The standard deviation method we used is adapted from one of the studies
by Umphress and Williams [UW85].

This method involves calculating the standard deviation of a person’s
digraph measurements. On receiving a claimant sample, each digraph from
the claimant sample is compared to the corresponding digraph in the ref-
erence profile. If the timing measurement from the claimant is within 0.5
standard deviations of the reference timing, then the digraph is considered
to be valid.

For classification, the claimant sample with the largest percentage of
valid digraphs is the best match for the reference profile. For authentication,
the threshold is the percentage of digraphs needed to authenticate. Some
studies recommend that 60% is a good threshold that will yield good FAR
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and IPR [UW85]. The benefit of this method is that each user has their
own standard deviation. Consistent typists will have a smaller standard
deviation and therefore have a smaller chance of impostors achieving a high
valid digraph percentage. The drawback is that it does not look at all of
the typing data as a whole. An impostor could have drastically different
digraph timings than the reference but still have 60% of the timings close
to the reference.

4.2 The Euclidean Distance Method

The Euclidean distance method we used is adapted from the studies con-
ducted by Brown and Rogers [BR94]. This method involves calculating the
distance between the claimant and reference vectors. The Euclidean distance
is the sum of the absolute values of the difference between every claimant
digraph timing and every the corresponding reference digraph timing.∑numberOfDigraphs

n=0 |claimaintDigraphn − referenceDigraphn|

For classification, the claimant sample with the shortest Euclidean dis-
tance is the best match for the reference profile. For authentication, the
threshold is the minimal distance a claimant sample is away from the ref-
erence in order to authenticate. The benefit of this method is that it takes
in to account every digraph measurement. The drawback is that the same
threshold is used for every user, regardless of their typing consistency.

4.3 The Ratio Method

The ratio method we used is adapted from a study by Gunetti and Picardi
[GP05]. This method closely resembles the standard deviation method in
that it attempts to determine the “validity” of a claimant digraph. Given a
claimant digraph and a reference digraph, the test for validity is to check:

max(claimantT iming, referenceT iming)
min(claimaintT iming, referenceT iming)

<= 1.25

For classification, the claimant sample with the largest percentage of
valid digraphs is the best match for the reference profile. For authentica-
tion, the threshold is the percentage of digraphs needed to authenticate.
Similar to using the standard deviation method, the ratio method takes
into account individual typing abilities. However, the drawback is that it
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does not analyze the typing data as a whole. An interesting note is that
Gunetti and Picardi recommend the ratio method over the standard devi-
ation method because they claim that calculating one standard deviation
for a person’s typing speed in general is not as significant as calculating
the individual standard deviations for each digraph. However, in order to
calculate a standard deviation for each digraph, each digraph needs to have
multiple entries. The ratio method can be used on digraphs with only one
measurement, thus taking advantage of as much data as possible.

4.4 The Vector Disorder Method

The vector disorder method we used is adapted from studies by Bergadano,
Gunetti, and Picardi [BGP02][GP05].

This method claims to be the best out of all previous research. It in-
troduces the novel idea of a relative measure vs. an absolute measure. The
previous 3 metrics are absolute measures because they depend on the com-
parison of absolute timing measurements. Using the vector disorder method,
we sort the claimant and reference profiles by the digraph timings. Once
sorted, we calculate the vector disorder using the the following:∑numberOfDigraphs

n=0 |indexOf(claimaintDigraphn)−
indexOf(referenceDigraphn)|

Figure 4.1: A example of vector disorder between a reference and claimant
for the typing sample “POMONA”
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Figure 4.1 gives an visual example of how vector disorder is calculated.
The benefit of this metric is that it is extremely robust against variance in
typing. The argument being that while your absolute timings might change
from time to time and when you switch keyboards, your relative timings
remain consistent. You will ideally consistently type “th” faster than say
“vz” or some other sort of pattern. The drawback of this metric is that
by simply relying on relative measurements, you have a situation where an
impostor typing twice as slowly as the reference profile still authenticate if
the impostor mimics the relative timing correctly.

4.5 Measure of Success: FAR vs. IPR

The measure of success of keystroke dynamics has been essentially the same
for every study. Every authentication system is tested by creating the refer-
ence profiles and then testing every users samples against every other user’s
reference to simulate an impostor attack. Additionally, samples not used in
the creation of an user’s reference profile is tested against the reference to
simulate a valid login.

Each of these tests measure how likely the authentication system will
reject a result when the person is actually the person who he/she claims to
be and how likely it is to accept a result when the person is an impostor.
Different studies have referred to these two errors as: Type I vs. Type II
errors, False Acceptance Rate vs. False Reject Rate, and False Alarm Rate
vs. Impostor Pass Rate. For this study, we refer to these errors as False
Alarm Rate (FAR) and Impostor Pass Rate (IPR) since these are the terms
used in the most current papers.

4.6 Thresholds

FAR and IPR values can be adjusted easily by changing the threshold for
accepting and rejecting users. Different situations require different emphasis
on FAR or IPR. For our experiment, we decided to graph out the FAR and
IPR for each of the analysis methods across 1000 thresholds. These graphs
are informative because they give a sense of how sensitive an analysis method
is to threshold adjustment.

We will use the standard deviation method to illustrate our graphing
method in more detail. Using the standard deviation method, the threshold
of authentication is the percentage of valid digraphs needed to authenticate.
To graph across 1000 thresholds, we would need to determine the min and
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Figure 4.2: A graph of an analysis method that is sensitive to threshold
adjustments

max threshold which would be 0% and 100% in this case. We then divide up
the range between the min and max threshold into 1000 to get a threshold
increment (0.1%). Then we calculate the FAR and IPR values for the stan-
dard deviation method starting with a threshold of 0% and incrementing the
threshold 0.1% each time until we reach 100%. Next, plotting the FAR and
IPR values will give us a graph that will resemble Figure 4.2 or Figure 4.3.

Ideally we want our graphs to look like Figure 4.3. Such a graph would
indicate that that the error rate drops quickly and that both IPR and FAR
stay low near the EER regardless of threshold changes. A bad analysis
method would have a graph similar to Figure 4.2. This graph shows that
slight changes in the threshold around the EER drastically affect the er-
ror rates. Such an analysis method would not be effective in a practical
implementation.

The argument for why such a method would not be practical is as follows.
If in our experiment, we determine that using 60% as the threshold for
standard deviation gets us FAR and IPR of 0%. However we see that at the
59% and 61% thresholds, FAR and IPR jump up to 70%. What this indicates
is that the distinction between an impostor and a valid user is incredibly
small and given the variance of typing in real life, there is essentially no
distinction between an impostor and a valid user. Our 0% would simply
be due to the fact that we found the “magic number” threshold for the
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Figure 4.3: A graph of an analysis method that is not sensitive to threshold
adjustments

experimental data but not a threshold that would be useable in a general
setting. Alternatively, if we see that the error rate stays low from the 40%
to 80% thresholds, then we could conclude that the 60% threshold would be
acceptable in a practical implementation.

In order to make the graph comparisons fair, each of the metrics were
graphed across 1000 thresholds with the min and max thresholds set to the
threshold where IPR was 100% and FAR was 100% respectively.
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Chapter 5

Results

In this chapter, we present the most relevant graphs for our experiment.
The graphs presented in this chapter are scaled according to the method de-
scribed in Chapter 4. The scales that were used can be found in Appendix C.
General statistics about the typing samples can be found in Appendix D.
Additional graphs using different scales can be found in Appendix E.

5.1 Authentication

The following comparisons were done only with key latencies using prede-
fined text samples for authentication tests. Each graph depicted shows the
IPR graph (starting from 100% going down to 0%) and the FAR graph
(starting from 0% and going up to 100%). The IPR graph is always the
smooth one while the FAR graph seems more like a step function. This is
because given 70 users, we can simulate 4830 impostor attacks while only
simulating 70 authentic login attempts.
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Figure 5.1: A graph of the standard deviation method vs. the Euclidean
distance method.

We begin by comparing the first two metrics which are the standard de-
viation method and the Euclidean distance method. Looking at the graph in
Figure 5.1, we see that the standard deviation method has an EER of around
10.5% and the Euclidean distance has an EER of 15.0%. Additionally, we
see that the slope of the standard deviation graph is less steep around the
EER, indicating that the standard deviation method is less susceptible to
threshold adjustments.
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Figure 5.2: A graph of the vector disorder method with 0 entries and with
0 entries removed.

Moving on to the vector disorder method, we tested two ideas for the
implementation. The research paper by Bergadano, Gunetti, and Picardi
indicate that larger vectors will theoretically yield better results for the
vector disorder method [BGP02]. One aspect of our data structure is that
everyone is using large vectors of size 676. However, these vectors tend to
end up with numerous zero entries since not every digraph is typed in a
given typing sample. Leaving the zero entries would give us a larger vector
but might also contaminate some of the vector disorder calculations. We
graphed both methods to see which implementation was better. Looking at
the graph in Figure 5.2, we see that removing the zero entries reduces the
EER from around 31.5% to about 15.5%. Clearly for our data structure,
removing the zero entries is the best option.
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Figure 5.3: A graph of standard deviation method vs. the vector disorder
method.

Figure 5.3 depicts the comparison of the vector disorder method versus
the standard deviation method. Once again standard deviation is the su-
perior metric with an EER of 10.5% compared to vector disorders 15.5%.
The vector disorder method also has a steep slope around the EER which is
surprising given that relative measures are suppose to be more robust than
absolute measures. We discuss this result in more detail in Chapter 6.
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Figure 5.4: A graph of the standard deviation method vs. the ratio method.

Finally, we compare the standard deviation strategy against the ratio
method in Figure 5.4. The ratio method outperforms the standard deviation
method with an EER around 5.0%. Examining the data more closely, we
determined that the best possible result we could achieve with the ratio
method was a FAR of 4.29% and an IPR of 8.55%. The slope near the EER of
the ratio graph is roughly the same as the standard deviation graph, leading
us to the conclusion that the two metrics are equal in terms of sensitivity to
threshold adjustments. After looking at each metric, we determined that the
ratio method was the most successful strategy for keystroke authentication.
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Figure 5.5: A graph of the ratio method using only key latencies versus key
latencies and key durations

Once we determined the best authentication strategy, we looked into
use of keystroke durations and free text analysis. Using keystroke latencies
and keystroke durations we were able to improve the error rates of the ratio
method slightly. Our best result was a FAR of 4.29% and an IPR of 3.37%.
However, the improvement was not overly significant as can be seen in the
Figure 5.5. The graphs for the other three metrics had similar results of
only minor improvements with the addition of keystroke durations.
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Figure 5.6: A graph of the ratio method on free text authentication.

Free text authentication results were far less successful than predefined
text authentication. All the error rates were above 50%. The best result
was once again the ratio method and the graph can be seen in Figure 5.6.
We achieved an FAR of 54.55% with an IPR of 42.03% in the best case.

5.2 Classification

Classification Results
Predefined Text Free Text

Std. Dev. 44.29% 72.72%
Euclidean 35.72% 63.64%
Ratio 18.57% 54.55%
vDisorder 61.43% 100%
vDisorder - 0 45.29% 90.91%

Table 5.1: Table of Classification Results

Table 5.1 shows the different error rates achieved for each statistical method.
The excessively high error rates of the vector disorder metric without the
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removal zero entries further strengthens our claim that zero entries need to
be removed in our implementation. The ratio method performed the best
for classification of both predefined and free text samples. This result firmly
confirms that the ratio method is the superior of the four metrics. One
surprising result we saw in classification was that Euclidean distance proved
to be a better classifier than the standard deviation metric. We explain our
reasoning for this in Chapter 6

30



Chapter 6

Discussion of Results

The results that we presented in Chapter 5 show that we were able to achieve
error rates on par with the 5% error rates of the studies we reviewed in Chap-
ter 2. However, we did have some surprising results and some exceptionally
high error rates for some cases. We will proceed to discuss these results
further in this chapter.

6.1 Goals

We want to begin by discussing the four goals we had for this experiment. We
definitely achieved our first goal of performing a fair comparison of several
statistical strategies. Our second goal of examining “global” patterns was
not as successful. Based on our research, we concluded that such patterns do
not exist for the general user. A more detailed discussion of our conclusion
can be found in the later section of this chapter. Our third goal of testing the
effectiveness of our simplified data structure was very successful. In general,
we found that our simplified reduction of the typing samples into our data
structure still resulted in the low error rates we presented in Chapter 5.
However, the data loss associated with our reduction may have caused the
disappointing performance of the vector disorder method. We discuss this
further in the next section. Finally, our fourth goal of emphasizing ideas
useful for practical implementations of keystroke dynamics was fulfilled with
the nature of data collection and our metric of graphing thresholds. Our data
collection did not discriminate between users of varying typing proficiency
because we believe that any practical authentication system needs to work
for your general user. We also perform minimal pruning of the data and
no user samples was completely removed. The method of graphing out
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thresholds to examine sensitivity to threshold adjustments turned out to be
an informative metric that we believe future research should consider.

6.2 Vector Disorder

Our literature review of keystroke dynamics convinced us that the vector
disorder would be the metric with the lowest error rates and the least sen-
sitive to threshold adjustments. However, the opposite of this was true.
After examining our implementation carefully, we believe that the cause of
this is that because our data structure is sufficient for maintaining absolute
timings but horrible for maintaining the integrity of relative timing infor-
mation. For our experiment, we wanted to make a fair comparison so we
made all the statistical methods to use a standard data structure. Given
more time, we would want to redesign our data structure to be closer to the
implementation described by Gunetti and Picardi [GP05].

6.3 Classification

In the authentication tests, the rankings of the methods from worst to best
was: vector disorder, Euclidean distance, standard deviation, and ratio.
In the classification tests, the rankings of Euclidean distance and standard
deviation were swapped. We believe that this is because Euclidean distance
takes into account every digraph measurement and therefore examines the
typing sample as a whole. This is mentioned in Chapter 4, and we want
to emphasize again that not looking at a typing sample as a whole can
cause problems where 60% of a sample maybe similar but the other 40% is
dramatically different. This is mostly likely what happened to the standard
deviation classification method.

6.4 Keystroke Durations

Previous studies that have looked at using keystroke durations have found
that duration timings are much more accurate for authentication than la-
tency timings are. In our experiment we were not able to replicate this
success when we used keystroke durations in addition to keystroke latencies.
Comparing our study to previous experiments, we think this lack of im-
provement is caused by our data structure. When previous studies included
keystroke duration timings, they effectively doubled the sized of the samples
they were comparing. With our data structure, adding keystroke durations
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only adds 26 more entries to a latency vector of size 676. Since keystroke
durations does not give us a significant amount of additional data, it makes
sense that adding these timings would not significantly improve our results
the way it did in previous studies.

6.5 Free Text: Global Patterns

All of the metrics we tested were not able to achieve good results when
we tested free text authentication. This led us to conclude that “global”
typing patterns do not exist for the average user. Careful examination of
the graphs in Chapter 5 did make us think that “global” patterns may exist
for certain individuals. Looking at Figure 5.4, we see that the ratio method
graph is essentially the standard deviation graph shifted left and down. This
make sense given the similarity of the two metrics and how they’re trying to
maximize number of valid digraphs. The ratio is simply a better definition of
“valid”. The almost identical slopes of the two metrics in this figure however
hint at the fact that the same users may be the cause of the same errors. If
this is the case, this tells us that certain users simply do not have consistent
enough typing for keystroke dynamics to work successfully. The inclusion of
these inconsistent users in our data set can skew our results to have higher
error rates. Previous free text studies have achieved results of FAR and IPR
of below 5% [GP05]. Our failure to replicate this success could be the side
effect of us not controlling the quality of the typists that participated.
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Chapter 7

Future Work

We are satisfied with the progress that was made in this experiment but we
also have several ideas for future research. Not only would more research im-
prove keystroke dynamics commercial products, any work done in keystroke
dynamics can also be used to aid the research of other behavioral biometric
research. Every behavioral biometric authentication scheme essentially is
trying to find a way of representing a reference and comparing a claimant
sample against the reference. The latest behavioral biometric that has been
suggested is gait-based authentication[GSB07], where users can be identified
and authenticated based on how they walk. We wish to emphasize that the
following proposed ideas can easily be applied behavioral biometric research
in general.

7.1 Improved Data Collection

One of the many problems is that there has been a lack of “real” typing
data collected. Every experiment so far has always involved asking the user
to type in a controlled situation. The closest to “real” data collection so
far are the Robinson et al. study [RLCM98] that recorded login strings and
the Gunetti and Picardi study on free text [GP05]. We believe that future
experiments should look into having volunteers install keystroke loggers on
their computers so that their every day use of computers can be logged.
This would have two immediate benefits. One, the amount of data gathered
would be significantly larger than any previous experiment and would also
allow researchers to make claims about “global” patterns that exist in users
regardless what typing situation they are in. Two, it would eliminate the
user complaint factor. It’s extremely difficult to get users to sit down and
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submit good typing data for long periods of time. Additionally, in practical
situations, it is unlikely that users will be willing to spend 20 minutes cre-
ating a typing profile so they can authenticate. In our experiment, only 2
users told us that they enjoyed the experiment (they liked the typing sample
choice) with the majority of users complaining about the length of the data
collection when they’ve gotten through about half the experiment. This
leads us to our next research idea of user acceptance.

7.2 User Acceptance

The idea proposed in the previous section about installing keystroke loggers
may raise some privacy concerns from researchers. We should consider that
if we can’t convince volunteers in an experiment to install a keystroke logger,
how likely is it that an average user would be willing to install a keystroke
logging authentication system on their computers? To our knowledge, no
study has been conducted on user attitudes towards a keystroke authenti-
cation system. Additionally we need to gauge how much annoyance an user
can tolerate for authentication. What level of false alarms is tolerable by an
user? How long of a typing sample are users willing to submit to authenti-
cate? How long are users willing to spend to create the reference profiles?
These are all important questions that need to be answered if keystroke
dynamics authentication is to gain wide-spread acceptance.

7.3 Dynamic Authentication

The idea of dynamic authentication has been mentioned and discuss in sev-
eral papers but in order to truly test and implement such a system, there
needs to be long term keystroke logging of users. Current commercial prod-
ucts such as Biopassword [CMD+] only perform static authentication. Any
study that looks at dynamic authentication will need to adopt a similar data
structure that we used in our experiment and have volunteers commit to the
experiment for a long period of time.

7.4 Conclusion

In conclusion, this experiment has convinced us that keystroke dynamics is a
viable technology that can definitely be improved on. While our results were
not spectacular, the fact that we were able to replicate the results described
in previous studies eliminates a lot of our earlier skepticism. However, we
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believe that keystroke dynamics is still in the theoretical stages and no where
near practical success yet.
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Appendix A

Glossary of Key Terms

Authentication Given a new typing sample X. “X is claimed to belong to
user U. The system must decide if this is true or false. X may belong
to U, to another known user, or to someone else (whose typing habits
are) completely unknown to the system.” [GP05]

Claimant Claimant Vector, Claimant Sample, etc . . . The typing sample
that we take in and compare to against a reference. It is a sample
from someone “claiming” an identity and we need to verify this claim.

Classification Given a new typing sample X. “X comes from one of the
known users. The system must find who actually provided the sample.”
[GP05]

Digraph A two keystroke combination. Sometimes used to refer to the tim-
ing of that keystroke combination. The timing of a digraph is defined
as the time elapsed from the release of the key and the depression of
the second key. See Key Latency

EER Equal Error Rate. The point where FAR and IPR are equal.

FAR False Alarm Rate. An error rate that represents how often a False
Alarm occurs. A False Alarm is when a valid user logging in is rejected.

Identification Given a new typing sample X. “X is presented to the system.
The system has two possible answers: (a) X belongs to user U; or (b)
X belongs to someone unknown. As in the case of authentication, X
may, in fact, belong to one of the known users, or to someone unknown
to the system.” [GP05]
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IPR Impostor Pass Rate. An error rate that represent how often an Im-
postor Pass occurs. An Impostor Pass is when an impostor attempts
to login and is accepted.

Key Duration The amount of time a key is depressed for. It is calculated
as the time elapsed from when the key is first depressed to the time it
is released.

Keystroke Dynamics The timing information that describes when keys
are depressed and released. Sometimes also used to signify the idea of
using the timing information for authentication/identification.

Key Latency The time elapsed from the release of the first key and the
depression of the second key

Over-Fitting A situation where a method is modified to the point where
it achieves near perfect results for the experimental data. However,
this optimized method does not work successfully given a new set of
data.

Reference Reference Vector, Reference Profile, etc . . . The sample stored
on file as the “authentic” typing sample. The reference is submitted
by the user initially and is used to determine the validity of a Claimant
Sample. Validity is determined by how similar/close the Claimant is
to the Reference. The closer the better.

Trigraph A three keystroke combination. The timing of trigraph is defined
as the time elapsed from the release of the first key to the depression
of the third key.
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Appendix B

Data Collection:
Supplemental

Some supplemental info about the data collection aspect of the experiment

Figure B.1: A screenshot of the web application we implemented

The following is a small sample of what users were asked to type
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• Operator. Give me the number for 911.

• Oh, so they have internet on computers now.

• Bart, with $10,000, we’d be millionaires. We could buy all kinds of
useful things like...love.

• Just because I don’t care doesn’t mean I don’t understand.

• I’m normally not a praying man, but if you’re up there, please save
me superman.

• You know, boys, a nuclear reactor is a lot like a woman. You just have
to read the manual and press the right buttons.

• Lisa, if you don’t like your job you don’t strike. You just go in every
day and do it really half-assed. That’s the American way.

• When will I learn? The answer to life’s problems aren’t at the bottom
of a bottle, they’re on TV!

• Son, when you participate in sporting events, it’s not whether you win
or lose: it’s how drunk you get.

• I’m going to the back seat of my car, with the woman I love, and I
won’t be back for ten minutes!
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Appendix C

Scale of Graphs

These are the scales used for the graphs in Chapter 5

Scales
100% IPR 100% FAR Threshold Increment

Std. Dev. 0.074 0.705 0.000631
Euclidean 31155 7900 -23.255
Ratio 0.083 0.703 0.000620
vDisorder 0.214 0.107 -0.000107
vDisorder - 0 0.694 0.240 -0.000454

Table C.1: Scales for graphs
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Appendix D

Database Statistics

The following is some statistical data about the digraph timings. Number
of times a digraph was typed refers to the maximum number times that
digraph was typed in one sample. The units of measure for the timing data
is milliseconds.
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Minimum Digraph Time: 1
Maximum Digraph Time: 500

REFERENCE PROFILE DATABASE STATISTICS
Number of users in database: 70
Average Number of digraphs typed out of 676: 317.542857143
Digraph typed the most: th
Number of times th was typed: 54
Average Number of digraphs users typed: 1784.44285714
Average Number of keystrokes typed out of 26: 23.7714285714
Average Keystroke Duration: 121.399490048

CLAIMANT SAMPLES DATABASE STATISTICS
Number of users in database: 70
Average Number of digraphs typed out of 676: 296.471428571
Digraph typed the most: th
Number of times th was typed: 51
Average Number of digraphs users typed: 1501.2
Average Number of keystrokes typed out of 26: 23.8857142857
Average Keystroke Duration: 127.092522121

FREE TEXT SAMPLES DATABASE STATISTICS
Number of users in database: 11
Average Number of digraphs typed out of 676: 152.0
Digraph typed the most: th
Number of times th was typed: 26
Average Number of digraphs users typed: 333.727272727
Average Number of keystrokes typed out of 26: 21.7272727273
Average Keystroke Duration: 74.578198301

Table D.1: Database Statistics
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Appendix E

Additional Graphs

The following graphs are on the scales of minimum possible score to maxi-
mum possible score. For example, with the Euclidean distance, the minimum
possible distance is 0 and the maximum distance would be 676 multiplied by
maximum allowed digraph time. The IPR graph is the smooth curve that
starts at 100% and declines. The FAR graph is the dotted curve that starts
at 0% and increases.

Figure E.1: A graph of the standard deviation method scaled from 0% to
100%
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Figure E.2: A graph of the Euclidean distance method scaled from 0 to
338000

Figure E.3: A graph of the ratio method scaled from 0% to 100%
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Figure E.4: A graph of the vector disorder method scaled from a normalized
disorder of 1.0 to 0.0
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