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Abstract

We examine the problems associated with incorporating use-
ful and expressive modularity into statically typed, object-
oriented programming languages. We propose a set of general
criteria against which module systems in such languages may
be judged, and discuss where existing languages (including
LOOM) fall short of meeting these criteria.

We then extend the module system of the LOOM language
to improve its expressiveness while maintaining strong infor-
mation hiding and separate compilability, by allowing each
module to reveal multiple interfaces to the outside world.
There is no restriction on these interfaces beyond that they
be consistent with one another and with definitions in the
module implementation.

Finally, we describe how our type-checker for the extended
language has been implemented, using a constraint graph
data structure to represent information about user-defined
types that cross module boundaries.
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Chapter 1

Introduction

A modular program is one that is split into pieces, called modules, which
each contain a subset of the program’s functionality. Modules work to-
gether to form a complete program, but at the same time each module is a
self-contained entity. A module groups together some set of related defini-
tions, such as types, classes, functions or procedures, and global variables;
the module then provides an abstraction of the functionality it contains by
exposing an interface that clients (other modules, or top-level application
code) can access.

Since modularity has been recognized as an important principle of soft-
ware design [Par72, McC04], many programming languages have included
built-in support for it. In §2, we discuss the benefits of modularity and
then propose a set of criteria that well-designed module systems should
satisfy. We emphasize lexical separation of interfaces and implementa-
tions, strong information hiding, fine-grained namespace management, and
support for Meyer’s open/closed principle [Mey97]. Some languages, such
as Java and C++, have a rich concept of classes that combines tradi-
tional object-oriented features with additional features to support modu-
larity. However, we argue that classes and modules should remain separate,
with [Szy92]. We then review the module systems of several important lan-
guages and discuss where they fall short of our criteria.

In the following part of this work, we focus on a language called LOOM
that has been developed by Professor Kim Bruce and various students [Bru96,
BFP97, BPV98]. LOOM is a statically typed, provably type-safe, object-
oriented language with a basic module system. In §3 we summarize the
most relevant features of LOOM and then discuss the shortcomings of its
original module system. Although LOOM’s original module system was
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statically type-safe and provided good support for separate compilation, in-
terface/implementation separation, and strong information hiding, it was
insufficiently expressive to support the open/closed principle.

In §4, we describe an extension to LOOM that greatly improves the
expressiveness of modules while maintaining separate compilability and as
much information hiding as possible. This is done by allowing each module
to expose multiple independent interfaces to the outside world. A module
can provide, for instance, a minimal interface for ordinary users and a more
detailed interface for clients who wish to extend the module; a module that
faces several clients in a large software system can also provide a distinct
interface for each client, specialized for that client’s needs.

The module system we propose is sufficiently general that implement-
ing a type-checker for it is not completely straightforward. In particular,
LOOM interfaces are allowed to specify fairly general constraints on user-
defined types in order to reveal the minimum of information that clients
need, without “leaking” any implementation details into the interface. When
a module or program imports a set of interfaces, the constraints they de-
clare must be checked for consistency, which is nontrivial. Therefore, in
§4.3 we describe in some detail our algorithm for processing a graph of the
constraints among a set of imported types, which checks the graph for con-
sistency and also regularizes its structure in such a way as to make the graph
simpler and more efficient for the type-checker to use.

We will conclude by arguing that our extension of LOOM addresses
one of the major shortcomings of the original module system, and then
suggesting future directions of work in this area.
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Chapter 2

Background

2.1 Benefits of modularity

Modularity is an important design principle in software engineering because
a well-modularized program has greater comprehensibility—it is easier for
humans to understand [McC04]. A large, complicated program likely has far
too many details for a single person to remember. Modules provide large-
scale internal structure to a program by breaking it into more conveniently
sized chunks that are small enough for individuals to understand, and suffi-
ciently decoupled from the rest of the program that they can be understood
in isolation. Moreover, modularity can make it possible for a person to
understand how the program functions as a whole by understanding the
modules’ interfaces and how the modules interact with one another, with-
out needing to know how each module works internally. Modularity enables
developers on a project to work together more effectively, since each person
can become an expert on just a few of the program’s modules, without need-
ing to understand the details of all the others. Because well-modularized
programs are easier to understand, they are also easier to construct, and
tend to contain fewer bugs.

In addition to its benefits for comprehensibility, modular programming
also improves code reusability. A well-designed module has few dependencies
on specific details of the program in which it was originally developed, and
those dependencies it has are clearly stated; this lets it be more easily re-used
in another program.

Modules also benefit maintainability, because separating the implemen-
tation of a module from its interface means that changes to the module that
do not affect its interface can be made without affecting any other modules
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in the program. Modules limit the scope of the unfortunate “domino effect”
wherein changing one aspect of a program breaks several others, necessi-
tating fixes that in turn break more features and so forth, causing a wave
of change that propagates throughout the program. Likewise, since mod-
ules interact only through their interfaces, modularity makes it easier to
construct different editions or variants of a program, by simply plugging in
different implementations for the same interface. For instance, modularity
can be used to improve portability, if the platform-specific code in a program
is isolated in a module that can be rewritten for each new platform without
changing the rest of the program.

Also, modules enable encapsulation and information hiding by providing
natural boundaries along which these policies can be enforced. Encapsula-
tion and information hiding improve program design by preventing different
pieces of the program from taking advantage of each other’s implementation
details [Par72]. Since modules already separate programs into pieces with
interfaces and implementations, it makes sense for programming languages
with module systems to enforce encapsulation and information hiding by
making it illegal for code to access the routines or state hidden in another
module’s implementation.

Finally, another benefit of modular programming is separate compila-
tion. Partitioning a program into modules should enable each module to be
compiled independently of the others. This allows a programmer to make a
change to a program and then recompile only those modules affected, which
can vastly improve compilation times (and therefore programmer productiv-
ity) in large projects. Separate compilation can also make modules natural
units for dynamic linking [Szy92].

2.2 Features of a good module system

Since modularity is so beneficial for software engineering, programming lan-
guage developers must consider how they can design languages with good
support for modular programming. There are some features that any well-
designed module system should have.

First, a module system should allow for clean lexical separation between
interfaces and implementations. The whole point of a module system is
that the connections between different modules are clearly stated, and a
programmer need not read through the implementation of a module to dis-
cover what its interface contains. Moreover, in the real world, source code
is not always the best format in which to distribute software; interfaces and
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implementations must be able to live in separate source files in order to
support binary distribution of libraries.

A good module system should support information hiding. That is, it
must be expressive enough that the interface can contain only the informa-
tion needed for clients of the module to use it; no details of the implemen-
tation should “leak” into the interface. One way of doing this is to allow
interfaces to define abstract data types (ADTs). With an ADT, a type is
declared in an interface but no information other than its name is given,
making it an opaque type. To allow clients to use the type without knowl-
edge of its internal structure, the interface also reveals functions that create
and operate upon values of the opaque type. However, in object-oriented
languages, ADT-style information hiding is clunky; we would prefer to al-
low clients to operate by calling methods of an object rather than passing
opaque values to free functions. One way to achieve this is to support partial
revelation [Pet96, Fre95], in which the name and some of the methods of an
object type are given in an interface, while the full definition is hidden in
the implementation. We will say more about partial revelation in §3.2.2.

Despite the demands of information hiding, the module system should
not break static typing, and it should enable separate compilation. Ideally,
a module can be type-checked and compiled entirely in isolation, knowing
nothing but the interfaces of any other modules it imports. This implies
that modules can be compiled in any order and that the correctness of a
module’s compilation cannot depend on knowing implementation details of
other modules. However, it also implies that an interface must contain
enough information to type-check and compile modules that import it.

Another concern related to modules is namespace pollution [Pet96]. Im-
porting a module usually introduces the names defined by the module’s
interface into the importing scope. However, in a piece of code that imports
many modules, it may become difficult to keep track of which names came
from where, particularly if the imported modules have large interfaces. It is
also possible for name collisions to occur, e.g. when two modules define sym-
bols with the same name. To sidestep these problems, a module system can
provide different modes of import. For instance, there could be one mode
in which imported declarations must be referred to by their fully-qualified
names (names that include the name of the module they came from, as a
prefix) and another mode in which the programmer explicitly states which
names should be usable in short (not fully-qualified) form.

Finally, a good module system should support the open/closed principle.
Meyer originally stated this principle for classes [Mey97], but we here ex-
tend it to cover modules: modules should be open to extension, but closed to
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modification. What this means is that once a well-designed module has been
constructed, it should not be necessary to modify it to extend it with new
features; rather, new features should be implemented by creating new mod-
ules that can be imported alongside the old module. This has some interest-
ing implications for object-oriented languages. In a good information-hiding
module design, object types will frequently be revealed only partially in the
interface (see §3.2.2). This partial revelation gives clients the information
they need to use the object type; however, to extend an object type we will
generally need a full revelation of all its fields and methods. Therefore, sup-
porting the open/closed principle requires languages to either provide a way
to bypass a module’s information hiding, or support multiple interfaces for a
module (e.g. one for normal clients and one for extenders). Each alternative
has its advantages and disadvantages. We will have more to say about this
in §3.3.

2.3 Why classes don’t make good modules

Classes and modules have a good deal in common. They both act as contain-
ers for sets of related definitions, they both introduce a new namespace for
the names they define, and they both create an abstraction of the function-
ality they contain. Several object-oriented languages, such as C++, Java,
Eiffel, and Smalltalk [Szy92], have therefore attempted to use classes for
modularization by giving classes the ability to hide information and in some
cases making them the units of separate compilation. However, there are
good reasons not to conflate classes and modules.

The primary purpose of classes is to generate objects. Methods of a class
do not work like ordinary functions; they accept the object on which to act
as an implicit parameter. However, there are many kinds of functions that
it makes sense to group together, but for which the idea of acting on an
object makes little sense. An example is mathematical functions [Szy92]. If
functions like sin, cos, sqrt and so forth are packaged into a class, we will
have to instantiate an object of the class in order to call these functions.
But the functions do not depend on the object and have no need of the
object, making the instantiation superfluous. To avoid this problem, Java
and C++ have introduced “static” methods, which can be called without
an object [Str00, AGH05]. In Eiffel, which does not provide static methods,
the convention is to inherit the class in which desired functions are defined;
for instance, a class needing to access sqrt would inherit the Math class (of
which sqrt is a method). Eiffel provides features to avoid name conflicts and
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namespace pollution, such as the ability to selectively rename or hide inher-
ited definitions [Eif06]. However, both static methods and renaming/hiding
inherited definitions are band-aids for the fundamental problem, which is
that classes are not an appropriate construct to modularize functionality
that does not fit into the object model.

Moreover, using classes as modules can lead to the problem of “spaghetti
scoping”, wherein a class hides its private information from most other
classes in the system, but exposes it to a specified set of other classes. This
situation arises when some group of classes need to maintain a group invari-
ant [Szy92]. The classes must hide information to prevent client code from
directly manipulating their internal representations and possibly breaking
the invariant; however, they must reveal this information to each other to
maintain the invariant. In C++ this can be accomplished by making the
classes “friends” of each other. Another possibility is to allow nested classes,
as Java, C++, and D do. However, class nesting is somewhat anomalous,
in that it is unclear how objects of inner classes should be instantiated. In
C++, inner classes are simply classes that are only visible in the namespace
of an outer class, while in Java and D, inner class instances can be associated
with a specific instance of the outer class and can access that outer object’s
instance variables and private methods [Str00, AGH05, Bri07]. Both friends
and nested classes are less natural than simply putting related classes in a
module, which would allow the classes to expose implementation details to
one another but hide them from clients of the module.

Although concepts like abstraction and information hiding make sense
for both classes and modules, the two are sufficiently different that trying to
unify them leads to an unnecessarily complicated class system and a poor
module system. Therefore, modules in object-oriented languages are better
implemented as a separate language feature orthogonal to classes, not by
overloading the class concept to enable modularity.

2.4 Existing module systems

In this section, we will briefly summarize the modularity features of some
relevant languages and point out their shortcomings.

2.4.1 C++

C++ has no module system to speak of. C++ programs are modularized
by convention, i.e. by having interface declarations in header files and imple-
mentations in source files. Importing is done with the preprocessor, which
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simply copies the contents of header files verbatim into source files. As a
consequence, earlier included declarations can affect the semantics of later
declarations, causing headaches wherein includes must occur in a specific or-
der for the program to compile. Moreover, limitations of the language mean
that not all implementation details can be hidden with headers; in particu-
lar, class definitions in header files must include all instance variables (and
therefore, all the definitions of the types of instance variables, etc.) so that
client code can determine how much memory to allocate for an instance of
the class.1 C++ does include namespace and using declarations, which
allow programmers to create new namespaces on the fly and import names
from one namespace into another. While useful for preventing namespace
pollution, this feature does not mitigate the previously mentioned problems.
Ultimately, modularization in C++ is ad hoc, not built into the language in
a coherent way.

2.4.2 Java

Java, like C++, gives classes many of the features of modules. In addition,
Java makes classes the units of separate compilation and dynamic linking,
and provides packages, which group together related classes or sub-packages.
However, Java packages are defined simply by including a package statement
in each source file, which makes it possible for any client to add their own
code to a package, obtaining access to the package’s internal definitions.
Moreover, interfaces for packages are not separately declared; programmers
must read a package’s source code to determine what is in its interface (or
use an automated tool to do it for them). Java does not require explicit
importing either, since fully-qualified names can always be used to refer to
any class whose definition can be found by searching the directories listed
in the CLASSPATH environment variable. Finally, though classes can usually
be separately compiled, mutually recursive classes cannot; they must be
compiled at the same time, which adds complexity and confusion to the
compilation process.

Lujo Bauer, Andrew Appel, and Edward Felten have worked on an ex-
tension to Java that improves its module system [BAF03]. Their system
fixes several of the problems discussed above: modules contain explicit lists
of their source files, the modules they import, and the classes they export.
Requiring a list of sources fixes the problem in which any client can add
their own code to a package; explicitly listing imported modules is a step

1The C++ community has developed ways to work around this particular issue, such
as the “pImpl idiom” and the factory pattern.
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in the right direction in terms of making sure a programmer can tell where
an imported symbol is coming from. However, this system still does not
require fully explicit module interfaces; only the names of exported classes
are given in the module description, but not their fields or methods.

Another interesting feature of Bauer, Appel, and Felten’s work is their
use of hierarchical modularity, which allows a single module to be given
multiple interfaces by wrapping it in other modules that re-export selected
parts of it. It is not clear, however, whether clients can recognize the same
type when it is available under different two or more names simultaneously
(aliasing). We will have more to say about aliasing in §3.4.

2.4.3 Python

Python is a dynamic programming language that has gained a good deal of
popularity in recent years. It has a module system similar to Java’s packages,
but with no information hiding at all. There is a distinction between public
and non-public definitions in a module, but it is only used to determine
which names to introduce into the importing code’s namespace. Non-public
definitions can still be accessed from outside a module using fully-qualified
names. Like Java, it also has the problem that module interfaces are not
declared separately from the module’s source code. However, explicit import
declarations are required to make a module’s definitions available even with
fully-qualified names. Another mode of import allows selected definitions to
additionally be accessed by abbreviated names.

2.4.4 D

D is a relatively new language intended to provide an alternative to C and
C++. It is designed to be suitable for high-performance applications and
low-level systems programming, but also attempts to incorporate some of
the high-productivity features from modern scripting languages [Bri07]. D
modules are quite similar to Java packages and Python modules, but D
allows greater control over the import process, providing several different
ways to import a module with slightly different effects. D modules are sep-
arately compilable, require explicit import, and support information hiding.
However, they again do not lexically separate module interfaces and imple-
mentations, and D classes exposed in a module interface are subject to the
same limitation as in C++, where all the instance variables must be known
to clients so that the right amount of space can be allocated for new objects.
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2.4.5 Modula-3

Modula-3 is an extension of Modula-2 that adds support for object-oriented
programming (as well as other new features). It has a quite strong module
system, a feature inherited from its predecessors, with good support for
interface/implementation separation and information hiding. Like Python,
it provides two forms of import, in which one imports only fully-qualified
names while the other allows abbreviated names.

Modula-3 also allows a module to have multiple interfaces, which allow
modules to reveal different information to different clients. This supports the
open/closed principle. However, the Modula-3 system is still not as general
as it could be, since interfaces must be nonoverlapping [Nel91]. Moreover,
Modula-3’s requirement that keywords be all uppercase makes it, for many
people, a very annoying language.

2.4.6 Standard ML

Standard ML (SML), though it is not object-oriented, has a quite general
and flexible module system. Interfaces, which are called signatures, are
well-separated from implementations, called structures. A signature can be
ascribed to a structure, hiding all declarations in the structure that are not
listed in the signature. Multiple signatures can be ascribed to a structure,
and sharing declarations can be used to ensure that multiple revelations
of the same underlying type can be used interchangeably. SML also has
parameterized modules, called functors; their imports are not fully resolved
until they are instantiated to produce a structure. Nested structures are
also supported.

Unfortunately, SML does not properly support separate compilation.2

It also does not allow fine-grained control of imports. Fully-qualified names
defined by other structures in the compilation group are always available
without an explicit import statement, and abbreviated names can only be
used after an open statement, which indiscriminately introduces all of the
names in a structure’s signature into the importing scope.

2.4.7 Moby

Moby [FR02, FR03] is an experimental language designed by Kathleen
Fisher and John Reppy. Moby is based on ML, but adds object-oriented
features. As such, it inherits both the advantages and disadvantages of ML’s

2Though SML of New Jersey’s built-in CM tool provides some incremental compilation.
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module system. Moby’s classes support public/private annotations on their
members, in addition to partial revelation of object types and class types
in signatures. This gives Moby programmers a good deal of control over
visibility and accessibility, as class members can be either hidden entirely
from the outside of a module, revealed as ‘private’ in the interface (visi-
ble to everyone, but accessible to extenders only), or revealed as ‘public’ in
the interface (visible and accessible to everyone). On the other hand, this
richness provides perhaps slightly more flexibility than needed, and has the
potential to make Moby more confusing to a programmer than a less flex-
ible system might be. Moreover, Moby allows certain anomalies, such as
methods that are visible in a base class but hidden in a subclass; this makes
Moby’s information-hiding system incompatible with the MyType construct
used in LOOM (see §3.1.2).

2.4.8 Units and Mixins

Robert Findler and Matthew Flatt describe an intriguing system that intro-
duces units (modules) and mixins (classes) in the context of MzScheme, an
object-oriented Scheme variant [FF99]. Findler and Flatt’s principle is that
modules should not specify the source of the definitions they import. In
other words, units are effectively modules parameterized by their imports;
interfaces that the imports must provide are specified, but multiple imple-
mentations of those imports can coexist in the same program. The language
includes linking expressions that wire one unit’s exports to another unit’s
imports. This is something like SML’s functors, but an important difference
is that a unit does not have to be recompiled when its imports are changed.
So, client code that imports a module can be re-used with an extended ver-
sion of that module by altering the linking expression, without altering any
client code.

Parameterized imports have implications for classes; when a class in-
herits from a base class defined in an imported module, it is effectively
parameterized by its base class, making it what Findler and Flatt term a
mixin. This makes units and mixins an elegant way to solve the expression
problem [Wad98]. Given a unit that defines the base class for the variants
and the initial set of variants and operations, new variants can be added
in the usual way by providing new units that define additional subclasses,
while new operations can be added in the usual way by subclassing the ex-
isting variants. However, unlike in most other languages, we can now go
back and combine the new operations with the new variants by making use
of the mixin feature to replace the superclass of the new variants with the
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extended superclass that defines the new operations. (Of course, we do need
to write more code to actually implement the new operations for the new
variants.) Then client code that depends on the added operations can make
use of added variants without recompiling them, even if the authors of the
added variants did not anticipate this.

Units and mixins are elegant, powerful constructs, but since MzScheme
is a dynamically typed language, Findler and Flatt did not have to worry
too much about breaking static typing. If this sort of functionality is to be
introduced into LOOM, its interaction with static typing will have to be
very carefully considered.
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Chapter 3

LOOM and its modules

In the following sections we’ll review the original state of the LOOM lan-
guage, and identify where its module system falls short of meeting the cri-
teria we outlined in §2.2. We will then discuss possible approaches to ad-
dressing the biggest problem with LOOM modules, and give examples to
clarify some of the issues involved.

3.1 Core language

LOOM is a statically typed, provably type-safe, object-oriented language
designed by Kim Bruce and others. LOOM has been described in detail
elsewhere [Bru96, Pet96, BFP97, Van97, BPV98, Thu02]. In this section
we’ll review its most important aspects.

3.1.1 Object types and class types

In LOOM, object types and class types are distinct. An object type is
something like an interface (note: not a module interface) in Java or D, or
an abstract class in C++: it contains a set of (virtual) method signatures,
but no fields and no implementation. Classes, which contain fields and
implementations, are first-class values in LOOM, and class types are the
types of these values; they include the signatures of all methods and the
types of all fields. Each class type has a corresponding object type generated
by removing all fields and hidden methods from the class type. The following
listing shows an example of a class and its corresponding object type:
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Listing 3.1 (Class types and object types).

-- A class
class ListNodeClass
var

value = 0 : integer;
next = nil : mytype;

methods
procedure setValue (v : integer)
begin

value := v;
end;

function getValue () : integer
begin

return value;
end;

procedure setNext (n : mytype)
begin

next := n;
end;

function getNext () : mytype
begin

return next;
end;

end;

-- The type of objects generated by the preceding class
ListNode = objecttype
setValue : proc (integer);
getValue : func (): integer;
setNext : proc (mytype);
getNext : func (): mytype;

end;

Multiple classes can generate the same object type, and objects of these
classes will be interchangeable. Object types have reference semantics, so if
A is an object type then variables of type A store either a reference to an
object of type A, or the special value nil, indicating a null reference.
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3.1.2 MyType

LOOM’s type system includes a construct called MyType, which can be used
to define recursive object types. Within an object type, MyType stands for
the object type itself, i.e. for the type of the implicit self variable available
inside method bodies.1

When defining a class, MyType stands for the object type generated by
the class. However, when a class is extended, the meaning of MyType changes
automatically in the subclass. Consider Listing 3.2:

Listing 3.2 (MyType and inheritance).

-- A superclass
class Foo
var ...
methods

function equals (other : mytype) : bool
begin ... end;

procedure clone () : mytype
begin ... end;

end;

-- A subclass
class Bar inherits Foo
methods

function someNewMethod ...
end;

In class Foo, the equals method takes an object of the same object type
that Foo generates, and the clone method returns an object of this type.
In Bar, a new visible method is defined, so the object type generated by Bar
is not the same as that of Foo. The inherited equals will now only accept
objects of the object type generated by Bar, and clone will now return
objects of this type, even though neither method has been redefined in the
subclass.

As the example demonstrates, MyType is particularly useful for express-
ing the type of so-called binary methods, which are methods that take a
parameter of the same type as the receiver. Binary methods occur fre-
quently, but are difficult to type in most languages, because the covariant

1This isn’t quite true; actually, the type of self allows access to instance variables,
while MyType doesn’t.
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specialization of the parameter type breaks subtyping [BCC+95]. In the
following section we will see how LOOM works around this problem.

3.1.3 Matching

A type B is a subtype of type A, written B <: A, if every element of B
can “masquerade” as an element of A; that is, if any code that works with
an A could also manipulate a B without type errors. Subtyping has been
discussed at length elsewhere [Bru96, Bru02], so we will not give a general
account here.

If A and B are object types, i.e. records of methods, then B <: A if B is
an extension of A, i.e. if it includes all the methods that A does and possibly
more. Therefore, if A is the object type generated by AClass and B the one
generated by BClass, then we will usually have B <: A if BClass inherits
from AClass.

However, this breaks in the presence of binary methods. If AClass
defines a method m : MyType → T (for an arbitrary type T ), then this
expands to m : A → T in A and m : B → T in B. Since m in B cannot
accept a parameter of type A, objects of type B can no longer masquerade
as As in all contexts. Therefore B 6<: A.

This is not as catastrophic as it seems. Even though B is no longer truly
a subtype of A, it is still “almost” a subtype: B has all the same methods
as A, so code that calls methods of A can call the same methods of B, with
the caveat that any binary methods can now accept only Bs and not As. To
capture this, we define the matching relation, which generalizes subtyping:

Definition 3.1 (Matching). An object type B matches an object type A,
written B <# A, if every method of A is also found in B with the same
signature (up to alpha-conversion).

In this context, MyType is considered as a free variable, so binary methods
do not prevent types from matching. In LOOM, if a class AClass generates
object type A and BClass generates object type B, then B <# A whenever
BClass inherits from AClass.

3.1.4 Match-bounded polymorphism and hash types

There are two primary uses of subtyping in object-oriented languages. The
first is to write polymorphic functions, which can accept arguments of a type
A or any of its subtypes. The second is to create variables that can store a
value of A or any of its subtypes, for instance as elements of a heterogeneous
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collection. Despite the fact that MyType breaks subtyping, we can actually
recover both of these facilities in LOOM, using matching.

Polymorphic functions can be written in LOOM using match-bounded
polymorphism. This is akin to the bounded parametric polymorphism avail-
able in Java 5, but with a matching relation providing the upper bound
rather than a subtyping relation. A polymorphic function takes a type pa-
rameter, where the type variable is constrained to match some known type.
Then the function can be called on any object type satisfying the constraint,
where occurrences of the type variable in the function’s signature are sub-
stituted with the actual type argument at the call site. For example, see the
following listing:

Listing 3.3 (Match-bounded polymorphism).

Base = objecttype
m1 : proc (integer);
m2 : proc (mytype);

end;

A = objecttype include Base ... end;
B = objecttype include Base ... end;
AClass = class ... end; -- Generates objects of type A
BClass = class ... end; -- Generates objects of type B

procedure f [T <# Base] (x, y : T)
var a = new AClass : A;

begin
x.m1(47); -- OK, x has m1
x.m2(y); -- OK, x has m2 and y is same type as x
x.m2(a); -- Error, T is not known to be A

end

var a1 = new AClass : A;
a2 = new AClass : A;

begin
f[A](a1, a2);

end;

Here, f is a bounded polymorphic function whose type parameter is con-
strained to match Base. (In LOOM, type parameters and arguments are
enclosed in square brackets [...] while ordinary parameters and arguments
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use parentheses.) Both A and B match Base (the notation include Base
copies all the method signatures from Base into a new object type). There-
fore, f can accept either Base, A, or B as the argument to its type parameter.
In this case, we call f with A as the type argument. This means that at the
call site, T (the formal name of the type parameter) is substituted with A
in the signature of f, so the two value parameters x and y must be passed
arguments of type A.

It is important to note that the body of f is only type-checked and
compiled once. Calling f with type argument A does not generate a new
version of f whose body is type-checked under the assumption that T = A.
This is why the third statement in the body of f is illegal; when f is compiled,
we know only that T <# Base, so the method m2 will only accept arguments
whose type is known to be T.

Match-bounded polymorphism can be used to write a function that ac-
cepts objects of any type matching A. To provide variables that are equally
flexible, LOOM provides hash types. If A is an object type, then #A (read
“hash-A”) is the type of variables that can store a reference to any object
whose type matches A. Any of the methods of A can be called on a value
of type #A except those including MyType as a parameter type. Such calls
are not statically type-safe, since the exact type of the object stored in a
variable of type #A isn’t known at compile time.

Note that some bounded polymorphic functions could be rewritten as
functions taking hash-typed parameters. However, these are less flexible
than bounded polymorphic functions, since hash types forbid all calls to
methods with MyType parameters, while bounded polymorphic functions al-
low these methods to be called so long as the receiver and argument can be
established to be the same type, as in the call x.m2(y) in Listing 3.3. More-
over, LOOM provides no way to express the constraint that two hash-typed
parameters should have the same run-time type, while bounded polymor-
phic functions can express this by using the same type variable for both
parameters, again as demonstrated in Listing 3.3.

Despite the fact that object types containing methods with MyType pa-
rameters have no proper subtypes, we can still recover nearly all of the
expressiveness that subtyping provides to object-oriented languages, by re-
placing subtyping with matching. For this reason, LOOM dispenses with
subtyping entirely and uses matching as the sole mechanism for polymor-
phism and heterogeneous data structures.
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3.2 Module language

LOOM’s module system was originally designed by Leaf Petersen [Pet96],
and was later extended by others including Joe Vanderwaart [BPV98]. It is
based to a large extent on the module system of Modula-3. In this section,
we will describe the LOOM module language as it existed before this work
began.

3.2.1 Interfaces, modules, and programs

In LOOM, a compilation unit is either an interface, a module (which pro-
vides the implementation for an interface) or a program (which provides the
starting point of execution). Compilation units can be in separate source
files and can be processed in any order, so long as units are defined before
they are used. That is, an interface must be processed before any modules
or programs that implement or import the interface; other than this, no
restrictions are placed on the order of compilation units. Only one module
can implement a given interface at a time, though different implementations
can be linked in to produce different complete programs.

An interface consists of a set of declarations and definitions of types, and
a set of declarations of constants (which can include constants of primitive
types as well as classes and free functions). Types can be declared with
no definition, in which case they are opaque types, or they can be declared
equal to some other type, in which case they are fully revealed. Object types
declared in an interface can also be partially revealed ; this is discussed in
§3.2.2.

A module definition in LOOM specifies the interface that it is intended
to implement; modules do not have separate names. The body of a module
consists of a set of type definitions and constant definitions; these must be
consistent with those declared in the interface. All types declared opaque
or partially revealed in the interface must be fully defined in the implemen-
tation, and all constants declared in the interface must be given a value in
the implementation.

A program consists of type definitions and constant definitions which
are local to the program, followed by a block, which may declare variables
and then execute a sequence of statements. There can be at most one
program in a linkset (a list of compilation units to be linked together).
The program’s block acts as the top-level function and entry point for the
complete program.

Both module implementations and programs may also import additional
interfaces. When this is done, the names declared by the interface are ac-
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cessible in the importing module or program, though only through fully-
qualified names, which in LOOM consist of an interface name, the scope-
resolution operator ::, and a symbol name. For instance, A::b refers to the
symbol b declared in interface A.

Interfaces may also import additional interfaces. This form of import
works transitively; if interface A imports B, then any implementation or
program that imports A also gains access to names declared by B.

The following listing demonstrates an interface, its implementation, and
a program importing the interface:

Listing 3.4 (Basic modularity).

interface Rationals;
type rational; -- Opaque type
make : func (integer, integer) : rational;
add : func (rational, rational) : rational;
...

end;

module implements Rationals;
type

rational = objecttype ... end;
const

class RationalClass ... end;
function make (n : integer, d : integer) : rational
begin ... end;

function add (a : rational, b : rational) : rational
begin ... end;

...
end;

program p;
import Rationals;

var
r : Rationals::rational;

begin
r := Rationals::add(Rationals::make(1, 2),

Rationals::make(1, 6));
end;

Within the program scope, variables of type Rationals::rational can
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be declared and used, but their representation as an object type with some
methods is hidden within the module scope.

3.2.2 Partial revelation

As seen in the previous section, LOOM modules provide good information
hiding in the form of opaque types. As mentioned in §2.2, modules can
produce abstractions in an ADT style by declaring an opaque type and
some set of functions that operate on it.

However, ADT-style abstractions can be clunky to use. In an object-
oriented language, we really want to be able to define data abstractions that
make use of the object model, particularly for the benefits of polymorphism.
To do this and maintain good information hiding, we need to be able to de-
fine object types for which some methods are visible outside the module,
and some are visible only within the module. LOOM provides partial rev-
elation as a mechanism for this. When an type is partially revealed in an
interface, it is declared to match some given object type. The exact type
remains unknown, but methods revealed by the matching bound can be
called. Partially revealed types are treated very much like type parameters
inside a bounded polymorphic function.

The following listing demonstrates partial revelation:

Listing 3.5 (Partial revelation).

interface SetOfInt;
IntSetType <# objecttype

add : proc (integer);
remove : proc (integer);
contains : func (integer) : bool;
intersect : proc (mytype);

end;
newSet : func () : IntSetType;

end;

module implements SetOfInt;
type

TreeNode = objecttype ... end;
IntSetType = objecttype
-- These methods are revealed by the interface
add : proc (integer);
remove : proc (integer);
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contains : func (integer) : bool;
intersect : proc (mytype);
-- These methods are only visible
-- in the implementation
getRoot : func () : TreeNode;
recursiveInsert : proc (integer, TreeNode);
...

end;
const

newSet = function () : IntSetType begin ... end;
...

end;

The interface defines a type IntSetType, whose exact definition is un-
known outside the module but which is defined to match an object type
with methods add, remove, contains, and intersect. Within the module,
a complete definition of IntSetType is given. For a module or program that
imports IntSetType, the four methods revealed in the interface will be in
scope, but the additional methods in the implementation will be inaccessible.

3.3 Evaluation of LOOM modules

How does the original LOOM module system perform with regard to the
features of good module systems discussed in §2.2?

First of all, it is clear that LOOM modules have excellent support for
interface/implementation separation and information hiding. Interfaces are
lexically separated from the implementation, so programmers do not need to
read the implementation of a module to learn what functionality it exports.
With opaque types and partial revelation, interfaces can avoid exposing any
more information about their implementations than is necessary. Moreover,
this is done in a way that preserves static type safety, and the semantics
developed for type-checking match-bounded polymorphic functions in the
LOOM core language can be re-applied to handle partially revealed types.
An interpreter supporting the original module system was implemented by
Leaf Petersen; though a compiler with modules has not been completed,
we are confident LOOM modules are separately compilabile because the
interpreter type-checks each module using only the information present in
interfaces imported by the module.

On the other hand, LOOM’s management of namespaces leaves some-
thing to be desired. When an interface is imported, the client code must
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use fully qualified names to access the imported definitions. While this
avoids namespace pollution and accidental name conflicts, using fully qual-
ified names all the time is somewhat cumbersome. It would be useful to
follow Java, Python, D, and Modula-3 in adding selective import of names
without their fully qualified prefixes, perhaps with optional renaming.

Finally, the modularity features described up to this point support the
open/closed principle rather poorly. Since only one interface can be ascribed
to each module, programmers must decide up front whether to write a min-
imal interface, which provides only the information needed for clients to use
the module, or write a more generous interface that provides information
needed for clients to extend the module. In the former case, extension is dif-
ficult since the module is locked up tightly. In the latter case, even ordinary
clients are able to see some of the implementation, which seriously weak-
ens information hiding. It is clear that a more expressive module system,
allowing modules to treat different clients differently, is needed.

3.4 Approaches to multiple-interface systems

The idea of a module that can expose different interfaces to different clients
is not new [Fre95, BA99, FF99, Thu02, BAF03]. In this section we will
discuss some existing approaches to the problem. Beyond supporting the
open/closed principle, multiple interfaces can also be useful in cases where
a module interacts with multiple other modules in a large software system.
The module could be designed with an interface for each client, each of
which was tailored to that client’s needs.

3.4.1 Opening

Earlier versions of LOOM included a facility called opening [Van97, BPV98].
Opening is a form of import that bypasses the entire information hiding prin-
ciple and brings all the definitions from a module’s implementation into the
opening scope.2 The addition of opening improves the situation slightly,
since a minimal interface can be written for most clients to use, while ex-
tending clients can open the module and get access to the details they need.
However, this is still far from desirable, as we may not wish to reveal all the
implementation details to any client.

2Note that this differs from the definition of opening in Standard ML, which simply
means that imported symbols are accessible in short form, without module-name prefixes.
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3.4.2 Monotonic interfaces

A simple modification of opening is the idea of monotonic interfaces, in
which we have a sequence of interfaces, each revealing strictly more than its
predecessor. For example, a module could have a minimal interface for nor-
mal clients and a second, more generous interface that reveals everything in
the minimal interface as well as additional information useful for extending
clients. More than two interfaces can also be supported in this paradigm.

Monotonic interfaces are easy to type-check, since the union of any com-
bination of these interfaces is simply the biggest (most generous) one in
the list. Therefore, type-checking reduces to the single-interface case to-
gether with checking that each interface includes all the revelations from
its predecessor. However, monotonic interfaces still do not provide all the
expressiveness we might desire: they do not allow us to provide completely
distinct interfaces, which can be useful for a module with different clients
that use different parts of its functionality.

3.4.3 General multiple interfaces

What we would really like to allow is for every module to have a completely
arbitrary set of interfaces associated with it, each of which is independent
of the others and reveals precisely the subset of the module’s functionality
that the interface designer desires. There should be no restrictions on how
many interfaces a module may have or what the relationship between those
interfaces may be; a module’s interfaces may be totally disjoint or they may
overlap, and they may be monotonic, or not.

This approach has consequences for type-checking. A module’s inter-
faces obviously must be consistent with its implementation. However, for
static type checking and separate compilation to work, clients must be able
to determine whether a set of interfaces is self-consistent without reference
to their common implementation. If we had access to the implementation,
we could simply check that each declaration in each interface was consis-
tent with its corresponding full definition (in the implementation); these
definitions would then be the ultimate arbiters of correctness. However, a
client must be able to type-check and compile without seeing the complete
definitions of the symbols it imports. This necessitates a more sophisticated
algorithm capable of assessing the internal consistency of a set of interfaces.
It must be an error for one interface to contradict another.

If we take the information-hiding principle to its logical conclusion,
clients should not even know that a set of interfaces shares a common im-
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plementation. If they did, it would compromise the freedom that strong
information hiding is supposed to provide: that we ought to be able to
seamlessly and transparently swap implementations conforming to the same
interface(s) at link time, without recompiling client code. In particular, if
a program imports two interfaces, we should be able to link it either with
two separate modules (one for each interface) or with a single module im-
plementing both interfaces.

Diane Bennett points out a problem that this approach raises [Ben03]:
interfaces may introduce aliasing, artificial distinctions between types. If
a client imports two interfaces with a common implementation, one would
expect to be able to access the union of the functionality exposed by both
interfaces. However, if the same underlying object type is partially revealed
in each interface, a näıve implementation will treat the two declarations as
independent, and a client will not be able to use objects created from one
interface with the functionality from the other interface. Examples of this
phenomenon will be discussed in §3.5. We see that the goals of expressiveness
and of type-safe separate compilation are at odds here.

In LOOM we compromise by introducing the means for an interface
to reveal that a type shares an implementation with a type from another
interface. With this extra information, clients are able to use separate dec-
larations of the same underlying type interchangeably. This does weaken
information hiding slightly, but if done carefully it reveals the minimum
amount of information necessary to allow the increased expressiveness we
desire.

3.5 Examples using multiple interfaces

To make the ideas in the preceding discussion more concrete, we present two
example programs demonstrating what we would like to be able to do with
the LOOM module language.

3.5.1 Extending a closed-source module

This example is adapted from [Ben03], and considers the following problem:
suppose we have a closed-source module implementing a Widget class, with
two interfaces: a minimal one, which reveals only the methods needed for an
application to use the widget, and a more generous one for clients who want
to subclass the widget to create their own kinds of widget. Such interfaces
might be defined as follows:

25



Listing 3.6 (A module with two interfaces).

interface Widget;
-- Partially reveal an object type for the widget
Widget <# objecttype

redraw: proc ();
...

end;

-- A factory function to let clients create widgets
makeWidget: func () : Widget;

end;

interface WidgetFull;
-- Fully revealing the widget’s object type
Widget = objecttype

-- The same methods we saw before
redraw: proc ();
...
-- Also reveal some internal methods
drawBorder: proc ();
drawContents: proc ();
...

end;

-- A class generating Widgets, which clients
-- can subclass
WidgetClass: classtype ... end;

end;

Note that the minimal interface reveals a factory function rather than a
class for creating Widgets, thus hiding any fields and implementation meth-
ods the underlying class may have (since if we revealed a class, we would
have to reveal its type, which contains full information about all fields and
methods). The generous interface, however, must reveal the class since any-
one who wants to extend the widget must have access to the class in order
to inherit from it.

Now, suppose we wish to create a new version of this widget which has a
border only on Sundays, and not on the other days of the week. Naturally,
we would write a module that defines an extension of Widget overriding its
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redraw method with our customized functionality. We might attempt to do
this as follows:

Listing 3.7 (Extending the Widget module).

interface CustomWidget;
import Widget;

-- Declare a new object type that matches
-- the original Widget.
CustomWidget <# Widget::Widget;

-- A new factory function.
makeCustomWidget: func () : CustomWidget;

end;

module implements CustomWidget;
import Widget, FullWidget;

class CustomWidgetClass
inherit FullWidget::WidgetClass
modifying redraw;

methods
procedure redraw ()
begin
-- Draw the border only if it’s Sunday
if getDayOfWeek() = Sunday then

drawBorder();
end;
drawContents();

end;
end;

function makeCustomWidget () : CustomWidget
begin

-- The following line triggers a type error
return new(CustomWidgetClass);

end;
end;

Unfortunately, this code will not compile. The problem is that from the
application’s point of view, Widget::Widget and WidgetFull::Widget are

27



completely different types; there is no relationship between them. Therefore,
when we try to type the result of new(CustomWidgetClass) as CustomWidget,
the type-checker will report an error since CustomWidget is declared to
match Widget::Widget but CustomWidgetClass is implemented in terms
of WidgetFull::Widget.

Why is it necessary to state in the interface that CustomWidget matches
Widget::Widget? This is required if we want to be able to use CustomWidgets
like Widgets. For instance, suppose we had a polymorphic function with a
type parameter T <# Widget, or a list whose elements are of type #Widget.
In either case, we would expect to be able to use CustomWidgets inter-
changeably with Widgets, but this is only possible if the type-checker judges
CustomWidget to match Widget. Since both types are partially revealed,
this constraint must be declared in the interface; it cannot be inferred from
outside the module implementing CustomWidget.

To allow Widget to be extended, the designer of the original module
would have to add the following lines in the WidgetFull interface:

import Widget;
Widget = Widget::Widget;

This causes the type-checker to identify the Widget type being declared
(which is WidgetFull::Widget since we are in the WidgetFull interface)
with Widget::Widget, the type declared in the minimal Widget interface.
With this addition, the extension module shown above will work.

Complete source code for this example can be found in §C.1.

3.5.2 Providing distinct functionality to different clients

In the previous example, we considered what is necessary to extend a module
without altering its implementation. Another case where multiple interfaces
can be handy is when a module interconnects with multiple other compo-
nents in a large software system. Such a module could be designed with an
interface specialized for each component it faces.

As an example, let’s consider a module in a student information system
for a university. The system stores information about students in a database
and provides varying levels of access to that information to different kinds of
users. The module we consider acts as an intermediary between the database
back-end and a front-end application; it provides an object-oriented view
of the database contents. In particular, it is responsible for providing a
Student object type. An application can look up a student record in the
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database and get a reference to the corresponding Student object; methods
of this object can then be called to retrieve information about the student,
such as his or her name, GPA, financial aid status, and so on.

Let’s suppose that varying levels of access are granted to different users
by providing several interfaces to our module, each of which exposes only
methods that retrieve information the client is permitted to see.3 We’ll
consider two classes of users: registrars and financial aid officers. Registrars
should be able to see a student’s class schedule and GPA, but not any
financial aid-related information; financial aid officers should be able to see
the student’s income and loans, but not any schedule or grade information.
However, there are some pieces of information both will be able to access,
such as the student’s name and permanent address. Therefore, we might
write the following interfaces:

Listing 3.8 (Overlapping interfaces).

interface Registrar;
-- Declare a Student type, revealing only the
-- information registrars can see
Student <# objecttype

getName: func () : string;
getAddress: func () : string;
getGPA: func () : real;
getCurrentSchedule: func () : List[CourseSection];
...

end;

-- Look up a student by ID number
getStudent: func (integer) : Student;

end;

interface FinancialAid;
-- The same Student type, but revealing only the
-- information financial aid officers can see
Student <# objecttype

getName: func () : string;
getAddress: func () : string;
getIncome: func () : real;

3Of course, a real student information system should not be designed this way; it is
brittle and probably insecure. However, let’s ignore that for the purposes of this example.
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getLoans: func () : List[StudentLoan];
...

end;

-- Look up a student by ID number
getStudent: func (integer) : Student;

end;

Here, a similar problem arises to the one we saw in the previous example.
Although there may be a single underlying implementation module with one
Student type that is revealed by both interfaces, the interfaces do not con-
tain the information that the Student from Registrar is interchangeable
with the Student from FinancialAid. This means that if a single client im-
ports both interfaces, it will find that a Student obtained via the Registrar
interface cannot then be used with the FinancialAid interface:

Listing 3.9 (Importing overlapping interfaces).

program StudentTest;
-- By importing both interfaces, we should have access
-- to the union of the Student methods from each.
import Registrar, FinancialAid;
var
theStudent: Registrar::Student;
GPA, income: real;

begin
-- Look up some student
theStudent := Registrar::getStudent(...);

-- Get the student’s GPA...we can do that
GPA := theStudent.getGPA();

-- Get the student’s income...oops, type error
income := theStudent.getIncome();

end;

The call to getIncome fails because theStudent is typed as Registrar::
Student, which is not judged equal to FinancialAid::Student by the type
checker, and therefore does not have the getIncome method. The solu-
tion, as before, is to add the equality information to the original interfaces.
To do this, we define the Student type in a third interface (let’s call it
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InfoSys), which reveals only the information about Student that everyone
has permission to access. Both the Registrar and FinancialAid inter-
faces then import InfoSys and declare their own Student types to be equal
to InfoSys::Student. This allows the program in the preceding listing to
compile (note that the program does not need to explicitly import InfoSys).
This technique is demonstrated in the following listing.

Listing 3.10 (Factoring out Student to a third interface).

interface InfoSys;
-- Declare a student type, revealing only the
-- information everyone can see
Student <# objecttype

getName: func () : string;
getAddress: func () : string;

end;

-- Look up a student by ID number
getStudent: func (integer) : Student;

end;

interface Registrar;
import InfoSys;
-- Reveal additional registrar-only information
Student = InfoSys::Student;
Student <# objecttype

getGPA: func () : real;
getCurrentSchedule: func () : List[CourseSection];
...

end;
end;

interface FinancialAid;
import InfoSys;
-- Reveal additional financial-aid-only information
Student = InfoSys::Student;
Student <# objecttype

getIncome: func () : real;
getLoans: func () : List[StudentLoan];
...

end;
end;
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Why is it necessary to create a third interface? We could, if we weanted,
have FinancialAid simply import Registrar and declare Student =
Registrar::Student. However, this would have the side effect of revealing
all the registrar-related functionality to anyone who imported FinancialAid,
which is undesirable. Therefore, both Registrar and FinancialAid must
link their Student types to InfoSys::Student, which reveals only the in-
formation that both registrars and financial aid officers are allowed to see.

The full source code for this example can be found in §C.2.
We have now outlined how a module system allowing general multiple

interfaces ought to work. In the following chapter we will examine in detail
how a type-checker for such a module system can be implemented.
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Chapter 4

Multiple-interface modules

In the previous chapter, we outlined the features of a general multiple-
interface module system and gave examples of how programmers might use
such a system. In this chapter, we will discuss how this system is actually
implemented in our prototype LOOM type-checker.

4.1 Overview

We have implemented a general multiple-interface module system, as de-
scribed in §3.4.3, in the LOOM type-checker. Our system allows for a
module to have an arbitrary set of interfaces, while interfaces can be type-
checked and used in client code without access to their implementations. To
solve the aliasing problem discussed in §3.4.3, we allow interfaces to specify
equality constraints between types; for instance, an interface A can include
a declaration T = B::T , where B is another interface, to specify that the
type-checker should assume the types A::T and B::T to be equal. These
equality constraints are combined with the matching constraints used in
partial revelation (see §3.2.2) in a single framework: a constraint graph. We
will discuss constraint graphs further in §4.3.

4.2 Syntax

In the new module system, interfaces contain declarations that introduce
type names and impose constraints on types. The constraints that can be
introduced are of two kinds: matching and equality constraints. The former
asserts that some type S must match a type T , and the latter that a type
S equals a type T .
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For example, the WidgetFull interface (see Listing 3.6, page 26) in its
final form contains two constraints.

Listing 4.1 (Syntax of an interface).

interface WidgetFull;
import Widget;
Widget <# objecttype -- (1)

redraw: proc ();
...

end;
Widget = Widget::Widget; -- (2)

makeWidget: func () : Widget;
end;

The constraints are (1) that Widget matches an objecttype with the
redraw method, and (2) that Widget is equal to Widget::Widget. This
interface also declares the constant makeWidget, which happens to be a
function.

Note that in declarations of type constraints, a name on the left side of
the constraint can declare a new type. In the preceding example, the type
Widget is declared by the line marked (1). Line (2) then refers, of course,
to the same Widget type; there cannot be two types with the same name
within the same scope. A name on the right side of a constraint must refer
to a previously declared type that is visible in the current scope.

The syntax for a module implementing multiple interfaces is simply to
list all the interfaces in the preamble of the module:

Listing 4.2 (Syntax of an implementation module).

module implementing Widget, FullWidget;
type

Widget = objecttype ... end;
...

const
class WidgetClass ... end;
function makeWidget () : Widget ... end;
...

end;

As before, every type declared in any of the interfaces being implemented
(that is, appearing on the left side of a matching or equality constraint) must
be given a full definition in the module body. The only exception to this rule34



is for types that are fully revealed in one of the interfaces (that is, involved
in an equality constraint whose right side is an explicit objecttype). The
module body is not required to restate the definition of fully-revealed types.

4.3 Constraint graphs

When we type-check a LOOM module or program, one of the first things
we must do is collect the interfaces that it imports and accumulate the
information stored in them into some sort of data structure. When type-
checking the body of the module or program, we will often refer to this
data structure, e.g. to type-check a method call on an object whose type
is partially revealed in an imported interface. The representation we have
chosen to accumulate the information about types revealed by interfaces is
a constraint graph.

In this graph, the nodes stand for types; some are named types, identi-
fied by a name declared in some interface (which may be opaque, partially
revealed, or fully revealed); others are explicit types, which are of the form
objecttype ... end, i.e. they contain an explicit listing of all an object
type’s methods. Object types are the only kind of types in a constraint
graph. Any named type declared in an interface is assumed to stand for
some object type, since object types are the only ones that can be involved
in matching relations.

The edges of the graph are constraints between the types. Edges are
labeled with the kind of constraint they represent, either “<#” for matching
or “=” for equality. Matching edges are directed, while equality edges are
considered to be bidirectional. A matching edge from A to B means that
A <# B.

For example, the Widget interface shown in the previous section would
give rise to the constraint graph shown in Figure 4.3.

As discussed in §3.4.3, when we type-check a group of interfaces, we must
ensure that their declarations are self-consistent. Here, the requirement of
consistency becomes a condition on the constraint graph. We could check
each declaration of each interface as it is inserted into the graph to ensure
that it is consistent with the information already in the graph, but instead
we have chosen to implement a scheme in which constraints are inserted
with only minimal checking, then the whole graph is checked for consistency
once at the end. The reason for this is that the constraint graph constructed
from a group of interfaces might have a complicated structure that would
make it difficult to make equality and matching queries; that is, it would
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WidgetFull::Widget

objecttype

  redraw: proc ();

  ...

end
<#

=

Figure 4.3: The constraint graph resulting from the Widget interface.

be difficult to use the graph to answer questions of the form “does A match
B?” or “is A equal to B?” when A and B are types involved in constraints.
Therefore, before using the graph for type-checking a module body, it is
regularized. By this we mean that the complicated “raw” constraint graph
is transformed into an equivalent graph with a simple structure that makes
equality and matching determination easy and efficient. Conveniently, it
turns out to be easy to check the graph for consistency at the same time
it is regularized. The following sections will describe the regularization and
consistency checking algorithms in more detail.

To summarize, the outline of the algorithm for type-checking a module is
as follows. (A program can be treated as a module that does not implement
any interfaces and that contains top-level code serving as the entry point.)

Algorithm 4.4 (Module type-checking). For each module:

1. Find all the interfaces imported by the current module (including those
imported indirectly via transitive import).

2. Add all constraints from the imported interfaces to an initially-empty
constraint graph.

3. Add all constants1 defined by the imported interfaces to an initially-
empty type environment.

1Recall that constants in LOOM include functions and classes, as well as constant
values of primitive types.
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Figure 4.5: In an unregularized constraint graph, equality and matching
checking require a full graph search.

4. Regularize the graph and signal an error if it is inconsistent.

5. If the module implements one or more interfaces:

(a) Check that each type declared in the interfaces being imple-
mented has a definition in the body of the module that is con-
sistent with the constraints placed on it by the interfaces. Add
these definitions to the constraint graph and re-regularize it.

(b) Check that each constant declared in the interfaces being im-
plemented has a definition in the body of the module that is
consistent with its declared type in the interfaces.

6. Type-check the body of the module.

4.3.1 Regularization

There are two ways in which the “raw” graph produced directly from the
constraints in the imported interfaces is too complicated to use directly. One
relates to equality queries and the other to matching queries.

First, a type may be provably equal to many more types than its im-
mediate neighbors (via equality edges) in the graph. For instance, in the
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constraint graph shown in Figure 4.5, the types A and F are equal, but to
determine this, the type-checker would have to search for a path between
them via equality edges, using a graph search algorithm such as BFS or
DFS. These take time linear in the number of types involved in an equality-
connected component of the graph. We would rather not have to pay this
cost every time we want to determine if two types are equal.

Similarly, a matching query might require a full graph search. Figure 4.5
shows that C <# G and G <# H; since matching is transitive, this means
C <# H as well, and so A <# H (since A = C). Determining that A <# H
requires finding a path from A to H. Moreover, checking that type A has
a particular method may require us to find all the explicit types A matches
in the graph (in this case, objecttype1, objecttype2, and objecttype3)
to locate the method.

The goal of regularization is to transform the graph into one that is equiv-
alent with respect to the constraints but for which equality and matching
determinations can be made efficiently. This is done in three major phases.

Phase 1. In the first phase we partition nodes into equivalence classes
based on equality. For each equivalence class, we choose a single represen-
tative node. If the class contains an explicit type, then that type becomes
the representative; otherwise, a named type is chosen arbitrarily. All other
nodes in the equivalence class are kept in the graph with just a single equal-
ity edge to the representative, and all matching constraints on nodes in the
equivalence class are moved to the representative.

Equivalence classes are determined by simply doing a BFS, starting from
an arbitrarily chosen node, which follows only equality edges. All nodes
reached by the BFS are therefore part of the same equivalence class.

Note that a cycle involving matching edges could also prove equality.
For instance, if A <# B and B <# C and C <# A, then A = B =
C. Our implementation does not currently check for such cycles, on the
assumption that it is unlikely such patterns would be created accidentally
by a programmer. However, if necessary, these cycles could be detected
straightforwardly using a BFS/DFS that followed matching edges as well as
equality edges.

Figure 4.6 shows the example graph from Figure 4.5 after the first phase
of regularization. Note that equality edges connect several types directly
to B, chosen as the representative of its component, and that all matching
constraints on types in that component have been moved to B.

At this point, equality determination is simple. For each type to be
compared, the representative of its component is found; the representatives
are then compared. For example, to determine that A and G are equal, we
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Figure 4.6: After the first phase of regularization.

look up their representatives, which are both B. Choosing an explicit type
(if one is available) as the representative ensures that equality queries also
work when one of the parameters to the query is an explicit type.

Phase 2. In the second phase, we propagate matching constraints “down”
the graph, i.e. against the direction of the matching edges. As discussed
earlier, matching is transitive, so e.g. B <# objecttype2 in Figure 4.6. We
would therefore like B to have a matching edge directly to objecttype2, and
more generally, every representative node in the graph should have matching
edges directly to all the other representative nodes that it matches. This
is accomplished by doing a backwards DFS, starting at each “top” node
(those without outgoing matching edges) and following the matching edges
backwards. At each node encountered, matching edges are added between
the node and all its ancestors in the DFS tree, i.e. all nodes it matches via
transitivity.

Figure 4.7 shows our example graph after the second phase of regular-
ization; now B has matching edges directly to H and to objecttype2, and
G also has a matching edge directly to objecttype2.

Phase 3. The final phase of regularization merges multiple matching
constraints to explicit types on a single node. For example, in Figure 4.7, B
matches three different objecttypes. However, matching several different
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Figure 4.7: After the second phase of regularization.

object types simultaneously is equivalent to matching their greatest lower
bound. Note that for matching, the greatest lower bound of a set S of object
types is simply the object type with the union of all methods from types
in S.2 Therefore, we identify representative nodes that match more than
one explicit type, find the greatest lower bound of those types, and replace
the several constraints by a single one. Figure 4.8 shows our example graph
after this phase. The three objecttype nodes have been merged into one,
denoted objecttype1+2+3, and B now has a single matching edge to that
node instead of three separate ones. However, B’s matching edges to the
partially revealed types G and H are maintained, as are G and H’s own
matching edges to objecttype2.

After regularization has completed, matching determination is as simple
as equality determination. To check whether two named types match, their
representatives are found and we check whether there is a matching edge
between them. To check whether a named type A matches an explicit type
C, we look at A’s representative and see if it has a matching edge to some
explicit type B; if so, we check whether B <# C (by directly comparing
their lists of methods, since they are both explicit).

2Lower bounds do not necessarily exist for all S; see the next section.
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Figure 4.8: After the third phase of regularization.

To summarize, the regularization algorithm works as follows.

Algorithm 4.9 (Constraint graph regularization).

1. Restructure equivalence classes of equal nodes.
While unvisited named nodes are left in the graph:

(a) Pick an arbitrary unvisited named node.
(b) Do a BFS on equality edges to find the equality-connected com-

ponent to which it belongs.
(c) Choose a representative from among the nodes found; if an ex-

plicit type was found, choose it, otherwise choose an arbitrary
named type.

(d) Move all matching constraints on nodes in the component to the
representative.

(e) Replace the equality edges within this component by a single edge
from each non-representative node to the representative.

2. Propagate matching constraints down the graph.

(a) Determine the “top” nodes, i.e. those without any outgoing match-
ing edges.
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(b) For each top node, do a DFS going backward along matching
edges; at each node encountered during the DFS, add matching
edges to all its ancestors in the DFS tree.

3. Merge multiple explicit matching bounds on named types.
For each named node:

(a) Find all explicit types this node is constrained to match.

(b) Merge them into one type and replace the existing constraints to
explicit types with one to the merged type.

In the next section we will discuss how consistency checking can be
incorporated into this algorithm.

4.3.2 Consistency checking

By definition, type equality is an equivalence relation and matching is a
partial order. For a set of constraints among types to be self-consistent, the
constraints should form a model of these relations. That is, the equality
relation implied by the graph should obey the axioms of an equivalence
relation (which are reflexivity, symmetry and transitivity), and the matching
relation implied by the graph should obey the axioms of a partial order
(which are reflexivity, antisymmetry and transitivity).

As one can easily convince oneself, these conditions are essentially guar-
anteed by the design of the regularization algorithm described in the pre-
vious section. However, this is actually not quite sufficient to guarantee
the consistency that we want. Equality cannot be any equivalence rela-
tion, and matching cannot be any partial order; equality must mean that
object types have the same methods with the same signatures up to alpha-
conversion, and matching must mean that the upper type has a subset of
the lower type’s methods. Therefore, the connection between equality and
matching in the constraint graph and equality and matching as generally
defined by LOOM’s semantics is located wherever explicit types are found
in the constraint graph.

With this in mind, we see that there are two places in the regularization
algorithm where we must introduce additional checks to ensure the equality
and matching relations implied by the graph are consistent with LOOM’s
semantics. First, in phase 1, when we are collecting nodes into equivalence
classes, if two or more explicit types are found in the same equivalence class,
we must ensure they are equal up to α-conversion before continuing; if they
are not, an error is signaled.
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Second, in phase 3, when we merge multiple matching constraints to
explicit types, we must ensure that the object types being merged are com-
patible with one another. Recall that merging a set of object types can be
described as finding the greatest lower bound for the types being merged,
with respect to the matching relation. However, since method names can-
not be overloaded in LOOM, if two object types each contain a method of
the same name but with different (not α-equivalent) signatures, then they
have no common lower bound; no object type can contain both methods.
Therefore, the merging process looks for method names in common between
the types to be merged and accepts them only if same-named methods have
the same signature up to α-conversion. Otherwise, an error is signaled.

In our implementation of the LOOM type-checker we have added these
two checks to the regularization routines. Though we will not give a formal
proof here, the regularization algorithm with these checks should correctly
enforce that type declarations from interfaces imported into a module are
consistent with LOOM’s semantic rules.

43



44



Chapter 5

Conclusion

In §3, we identified a major shortcoming in the original module system of
LOOM: that it does not provide good support for the principle that a
programmer should be able to extend a well-designed module without mod-
ifying the code in it. We suggested that the most straightforward way to
rectify this problem was to allow for a module to expose multiple interfaces
to the outside world; different interfaces could be targeted to different kinds
of clients. In §4, we showed how to implement a type-checker for a general
multiple-interface module system with no restrictions on the interfaces ex-
ported by a module except the basic requirement that they be consistent
with one another and with the definitions in the module’s implementation.

As a result, we believe that LOOM with our extended module system
now supports the open/closed principle well. Both of the multiple-interface
examples in §3.5 (for which full source code appears in Appendix C) can
be type-checked under our system, and we believe our system presents no
barrier to static type safety or separate compilation. Our system therefore
makes LOOM much more usable for programming in the large than it
previously was.

Much work remains to be done on this subject, both theoretical and
practical. On the theoretical side, we have not attempted to prove that type-
checking is sound under our new semantics, and we have not attempted to
formally prove separate compilability (though the language is certainly sep-
arately compilable, since the type-checker uses information from interfaces
only when importing a module). Separate compilability might be proved
using a formal semantics of linking like that developed by Cardelli [Car97].
In addition, it would be useful to investigate the complexity of type-checking
and of our regularization algorithm (Algorithm 4.9 on page 41); we believe
the latter to be at worst quadratic in the size of a single connected compo-
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nent of the constraint graph, and linear in the number of such components.
Given typical programming practice, it may well be the case that the size
of a connected component is constant-bounded in real-world cases, making
regularization effectively linear in the number of types declared by imported
interfaces.

Additionally, we would like to investigate the possibility of generalizing
LOOM’s module system still further to include a parameterized-import
system akin to the “units and mixins” of Findler and Flatt [FF99], which
we discussed briefly in §2.4. Findler and Flatt’s solution to the “expression
problem” is particularly attractive, and it would be interesting to see if this
could be realized in LOOM while maintaining static type safety.

On the practical side, although we have implemented a type-checker for
our extension of LOOM, we do not yet have an interpreter for it; our front-
end code base had fallen into serious disrepair and we decided to rewrite it
almost entirely at the beginning of this project, which unfortunately means
the interpreter will need a significant amount of work before it will become
functional again. Moreover, our type-checker leaves out “typegroups”, a fea-
ture introduced in LOOM in [BV99] (following similiar work done with an
extension of Java; see [Bru97]). Typegroups, like modules, group together
a set of related definitions; however, the primary purpose of typegroups is
to allow programmers to define mutually-recursive groups of object types
that can then be extended as one, while the purpose of modules is to pro-
vide abstraction barriers, information hiding, and separate compilation. We
therefore believe typegroups and modules are orthogonal features, although
their interaction has not been fully investigated.
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Appendix A

LOOM module grammar

In this appendix, we give an updated formal grammar for the new LOOM
module system with multiple interfaces. The grammar for the core language
can be found in [Pet96].

Nonterminal symbols are set in italic while terminal symbols are set in
typewriter text. (We will also place quote marks around single-character
terminals, since it can be difficult to tell whether they are set in typewriter
text or not.) The notation id represents any identifier token. Note that
LOOM is case-insensitive with respect to both keywords and identifiers.

For brevity we will use EBNF notation. A* denotes zero or more repe-
titions of A, while A? denotes an optional A.

Table A.1 (LOOM module grammar).

Start ::= compUnit (“;” compUnit)* “;”? EOF
compUnit ::= programUnit | interfaceUnit | implementationUnit

programUnit ::= program id “;” importDecl? abbrevList? unitBlock
interfaceUnit ::= interface id “;” importDecl? declList? end

implementationUnit ::= module implements id (“,” id)* “;”
importDecl? abbrevList? constList?

end
importDecl ::= import id (“,” id)* “;”

declList ::= decl (“;” decl)* “;”?
decl ::= id (“,” id)* “:” typeExp

| id “<#” typeExp (“,” typeExp)
| id “=” typeExp (“,” typeExp)
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typeExp ::= longName
| objecttype includeDecl? methodTypeList? end
| . . .

includeDecl ::= include longName (“,” longName)* “;”?
methodTypeList ::= methodType (“;” methodType)* “;”?

methodType ::= id (“,” id)* “:” funcType
longName ::= id (“::” id)*

The rules for abbrevList, constList, unitBlock, and funcType, as well as
the complete rule for typeExp, may be found in §A.2 of [Pet96]. (We have
here omitted the cases of typeExp that are not relevant to module type-
checking, such as primitive types, class types, and so on.)
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Appendix B

Type-checking rules for
LOOM modules

In this appendix, we give updated formal type-checking rules for the new
LOOMmodule system with multiple interfaces. Formal type-checking rules
for the core language can be found in [Pet96].

Definition B.1 (Type constraint systems).

1. If σ is a named type and τ is either a named type or an explicit
objecttype with no free variables, then the statements σ = τ and
σ <# τ are type constraints.

2. A type constraint system C is a set of type constraints. C0 ≡ ∅ denotes
an empty type constraint system.

Definition B.2 (Type environments).

1. E0 ≡ ∅ is an empty type environment.

2. If E is a type environment, N is a name not appearing in E , and τ is
a type, then E ′ ≡ E ∪ {N : τ} is a type environment, and we write

E ′(N) = τ.

B.1 Type equality and matching; consistency

The following rules describe how a type constraint system produces judge-
ments of type equality and matching. There are two base cases for each:
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one which handles judgements added directly to the type constraint sys-
tem (e.g. from an interface), and one which handles judgements on explicit
objecttypes (which may use the constraint system recursively).

When we need to take apart an explicit objecttype, we use the notation
objectType〈µ, ρ〉. Here µ represents the object’s MyType name, which may
be different than the string “mytype” since the implementation occasionally
alpha-converts MyType names to avoid name conflicts during substitution.
ρ represents a record of the object’s methods.

Table B.1 (Equality and matching rules).

Equality: direct
(τ1 = τ2 ∈ C) ∨ (τ2 = τ1 ∈ C)

C ` τ1 = τ2

Equality: explicit

τ1 = objectType 〈µ1, ρ1〉
τ2 = objectType 〈µ2, ρ2〉
C ` ρ1 =α ρ2[µ1/µ2]
C ` τ1 = τ2

Equality: induction

C ` τ1 = τ2
C ` τ2 = τ3
C ` τ1 = τ3

Equality: matching

C ` τ1 <# τ2
C ` τ2 <# τ1
C ` τ1 = τ2

Matching: direct
τ1 <# τ2 ∈ C
C ` τ1 <# τ2

Matching: explicit

τ1 = objectType 〈µ1, ρ1〉
τ2 = objectType 〈µ2, ρ2〉
C ` ρ2[µ1/µ2] ⊆α ρ1

C ` τ1 <# τ2

Matching: induction

C ` τ1 <# τ2
C ` τ2 <# τ3
C ` τ1 <# τ3
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Definition B.3 (Consistency). A type constraint system C is consistent if,
for any pair of explicit objecttypes

τ1 = objectType 〈µ1, ρ1〉
τ2 = objectType 〈µ2, ρ2〉

both of the following conditions are satisfied:

1. If C ` τ1 = τ2 then C ` ρ1 =α ρ2[µ1/µ2].

2. If C ` τ1 <# τ2 then C ` ρ2[µ1/µ2] ⊆α ρ1.

We use the notation B to mean “produces a consistent type constraint sys-
tem”. For instance, if C1 and C2 are type constraint systems, then

C1 ∪ C2 B C3

means “the union of C1 and C2 is a consistent type constraint system C3.”

B.2 Interfaces and declarations

The following rules specify how the declarations from a list of imported
interfaces are turned into a type constraint system and a type environment.

Definition B.4 (Declarations).

1. If T is an unqualified name (i.e. a name not including the scope resolu-
tion operator ::) and τ is either a named type or an explicit objecttype
with no free variables, then T = τ and T <# τ are declarations (specif-
ically, they are type declarations).

2. Additionally, if N is an unqualified name and τ is either a named
type or an explicit objecttype with no free variables, then N : τ is a
declaration (specifically, a constant declaration).

Table B.2 (Declaration-list rules).

Empty interface C, E ` ∅ B C, E

Equality declaration

C ∪ {T = τ} B C′
C′, E ` otherDecls B C′′, E ′

C, E ` T = τ ; otherDecls B C′′, E ′
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Matching declaration

C ∪ {T <# τ} B C′
C′, E ` otherDecls B C′′, E ′

C, E ` T <# τ ; otherDecls B C′′, E ′

Constant declaration

C ∪ {N : τ} B C′
C′, E ` otherDecls B C′′, E ′

C, E ` N : τ ; otherDecls B C′, E ′′

Definition B.5 (Fully-qualified names). A fully-qualified name consists of
an interface name M and a declaration name N , and is denoted M ::N .

The function qualify takes an interface name and a list of declarations
and affixes the interface name to the name of each declaration, producing a
new declaration list in which each declaration name is fully-qualified.

Definition B.6 (Interface systems).

1. Following the interfaceUnit rule defined in Table A.1, an interface
consists of a name M , a list of imported interface names imps ≡
{imp1, . . . , impn}, and a list of declarations decls ≡ {decl1, . . . ,
declm}. An interface will be denoted by interfaceUnit 〈M, imps, decls〉.

2. I0 ≡ ∅ is an empty interface system.

3. If I is an interface system and interfaceUnit 〈M, imps, decls〉 is an
interface, then I ′ ≡ I∪

{
interfaceUnit 〈M, imps, decls〉

}
is an interface

system, and we write

I ′(M) = 〈imps, decls〉 .

Table B.3 (Import-list rules).

Empty import list I, C, E ` ∅ B C, E

Import list

I(imp1) = 〈imps, decls〉
I, C, E ` imps B C′, E ′

C, E ` qualify(decls) B C′′, E ′′
I, C′′, E ′′ ` otherImports B C′′′, E ′′′

I, C, E ` imp1; otherImports B C′′′, E ′′′

This last rule simply says that when an interface is imported, first all
the interfaces it imports are recursively imported, and then the interface’s
own declarations are added (in fully-qualified form) to the current constraint
graph and type environment.
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B.3 Compilation units

The following rules specify how compilation units (which are either pro-
grams, interfaces, or modules) are type-checked. The only information car-
ried between compilation units is the interface system I, which represents
the interfaces that have already been processed and are therefore available
for import. Each invocation of the type-checker starts with a fresh interface
system, which is empty except for standard-library interfaces.

Table B.4 (Compilation unit rules).

Base case I ` ∅ ↪→ I

Program

I, C0, E0 ` imps B Cimp, E
abbrevs B Cabbrev
Cabbrev ∪ Cimp B C
C, E ` block

I ` otherUnits ↪→ I ′

I ` programUnit 〈N, imps, abbrevs, block〉 ; otherUnits ↪→ I ′

This says that to type-check a program, we first gather its imports into a
constraint system Cimp and type environment E . We also gather constraints
based on the program’s own type abbreviations (Cabbrev ) and put them all
into one constraint system C, which we ensure is consistent and then use to
type-check the program body. (The rules for judging C, E ` block may be
found, with the rest of the core language type-checking rules, in [Pet96].)

Interface

I, C0, E0 ` imps B Cimp, E
Cimp, E ` decls B C, E ′

I ∪ {〈N, imps, decls〉} ` otherUnits ↪→ I ′

I ` interfaceUnit 〈N, imps, decls〉 ; otherUnits ↪→ I ′

To type-check an interface, we gather its imports into a constraint system
and environment (just as we do for programs) and then incorporate the
contraints from the interface itself (decls). If the resulting constraint system
is consistent, we add the interface to the interface system.

57



Implementation

I, C0, E0 ` (names ∪ imps) B Cimp, E
abbrevs B Cabbrev⋃

n∈names
⋃
d∈I(n).decls{d.name = n::d.name} B CQ
Cabbrev ∪ Cimp ∪ CQ B C

∀n ∈ names ∀d ∈ I(n).decls has-def(d, C, abbrevs, consts)
C, E ` consts

I ` otherUnits ↪→ I ′

I ` implementationUnit 〈names, imps, abbrevs, consts〉 ;
otherUnits ↪→ I ′

where has-def(T = τ, C, abbrevs, consts) = ∃σ

{
σ = objectType 〈µ, ρ〉
C ` T = σ

∨ ∃a ∈ abbrevs T = a.name

has-def(T <# τ, C, abbrevs, consts) = ∃σ

{
σ = objectType 〈µ, ρ〉
C ` T = σ

∨ ∃a ∈ abbrevs T = a.name

has-def(N : τ, C, abbrevs, consts) = ∃c ∈ consts N = c.name

Type-checking an implementation begins by gathering constraints from
the imports and type abbreviations, just as in the rule for programs. We
also include the interfaces being implemented by this module (names). We
then create a type constraint system CQ that contains a constraint for each
declaration in each of the interfaces being implemented, equating the decla-
rations’ short names to their fully-qualified names. Since types are referred
to by short names in the module body but fully-qualified names in the inter-
faces, explicitly linking the two is necessary. Then we ensure that each type
and constant declared in one of the implemented interfaces is fully defined
(using the predicate has-def). Finally, we type-check the module body and
recursively type-check any remaining compilation units.

has-def works as follows. For type declarations (T = τ or T <# τ)
it first checks to see if the type is already fully defined by the constraint
system C. That is, it looks for a type σ that is an explicit objecttype
and has C ` T = σ. If this is not the case, T is required to be defined
in the module implementation’s list of type abbreviations (abbrevs). For
constant declarations (N : τ), has-def checks that N is defined in the
module implementation’s list of constants (consts).
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Appendix C

Example programs

In this appendix, we give a pair of complete example LOOM programs
using the new module system.

C.1 Extending a closed-source module

This example expands upon the GUI widget example discussed in §3.5.1.
First, a widget module is defined with two interfaces, a stingy one and a de-
tailed one. Then a module extending the widget is defined using the detailed
interface. Finally, a program using both kinds of widgets interchangeably is
demonstrated.

-- GUI widget extension test for LOOM
-- Written by Nathan Reed, spring 2008

----------------------------------------------------
-- A basic GUI widget module with two interfaces. --
----------------------------------------------------

interface Widget;
-- Partially reveal an object type for the widget
Widget <# objecttype
redraw: proc ();
setPos: proc (integer, integer);

end;

-- A factory function to let clients create widgets
makeWidget: func () : Widget;

-- A function that draws two widgets at once.

59



-- This takes #Widget as a parameter so that any
-- customized extension of Widget can be used.
drawWidgets: proc (#Widget, #Widget);

end;

interface WidgetFull;
import Widget;

-- Fully revealing the widget’s object type
Widget = Widget::Widget;
Widget = objecttype
-- The same methods we saw before
redraw: proc ();
setPos: proc (integer, integer);

-- Also reveal some internal methods
drawBorder: proc ();
drawContents: proc ();

end;

-- A class generating Widgets, which clients
-- can subclass
WidgetClass: classtype
var posX, posY : integer;
methods
redraw: proc ();
setPos: proc (integer, integer);
drawBorder: proc ();
drawContents: proc ();

end;
end;

module implements Widget, WidgetFull;
import IO;

-- Note: no need to give definition for Widget type since it is
-- fully revealed by the WidgetFull interface.

const
class WidgetClass
var
posX = 0, posY = 0 : integer;

methods
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procedure redraw ()
begin
IO::printString("Redrawing Widget\n");
drawBorder();
drawContents();

end;

procedure setPos (x, y : integer)
begin
posX := x;
posY := y;

end;

procedure drawBorder ()
begin
IO::printString("...drawing border\n");

end;

procedure drawContents ()
begin
IO::printString("...drawing contents\n");

end;
end;

function makeWidget () : Widget
begin
return new WidgetClass;

end;

procedure drawWidgets (widget1, widget2 : #Widget)
begin
widget1.redraw();
widget2.redraw();

end;

end;

---------------------------------------------------
-- An extension module defining a custom widget. --
---------------------------------------------------

interface CustomWidget;
import Widget;
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-- Declare our own custom widget type to match
-- the original widget type
CustomWidget <# Widget::Widget;

-- Reveal an additional method of our custom widget
CustomWidget <# objecttype
setCustomState: proc (string);

end;

-- Factory function
makeCustomWidget: func () : CustomWidget;

end;

module implements CustomWidget;
import IO, WidgetFull;

type
CustomWidget = objecttype
redraw: proc ();
setPos: proc (integer, integer);
drawBorder: proc ();
drawContents: proc ();
setCustomState: proc (string);

end;

const
class CustomWidgetClass
inherit WidgetFull::WidgetClass modifying redraw;
var
customState = "" : string;

methods
procedure redraw ()
begin
IO::printString("Redrawing CustomWidget\n");
IO::printString("...custom state is: " ^ customState ^ "\n");
drawContents();

end;

procedure setCustomState (newState : string)
begin
customState := newState;

end;
end;
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function makeCustomWidget () : CustomWidget
begin
return new CustomWidgetClass;

end;

end;

---------------------------------------------
-- An program using both kinds of widgets. --
---------------------------------------------

program WidgetTest;
import IO, Widget, CustomWidget;

var
myWidget : Widget::Widget;
myCustomWidget : CustomWidget::CustomWidget;

begin
-- Create some widgets
myWidget := Widget::makeWidget();
myCustomWidget := CustomWidget::makeCustomWidget();

-- Set some state
myWidget.setPos(12, 34);
myCustomWidget.setPos(56, 78);
myCustomWidget.setCustomState("Hello, world!");

-- Treat the custom widget as an ordinary widget
Widget::drawWidgets(myWidget, myCustomWidget);

end;

C.2 Providing distinct functionality to different
clients

This example expands upon the student information system example dis-
cussed in §3.5.2. First, an InfoSys interface is defined revealing very ba-
sic information about a Student type, then two more generous interfaces
(Registrar and FinancialAid) are defined that reveal more information
about Students. Then, a program importing both of these interfaces is
demonstrated.
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-- Student information system test for LOOM
-- Written by Nathan Reed, spring 2008

----------------------------------------------------------------
-- A student information system module with three interfaces. --
----------------------------------------------------------------

interface InfoSys;
-- Declare a student type, revealing only the
-- information everyone can see
Student <# objecttype
getName: func () : string;
getAddress: func () : string;

end;

-- Look up a student by ID number
getStudent: func (integer) : Student;

end;

interface Registrar;
import InfoSys;

-- Reveal additional registrar-only information about Student
Student = InfoSys::Student;
Student <# objecttype
getGPA: func () : real;
getNumCredits: func () : real;

end;
end;

interface FinancialAid;
import InfoSys;

-- Reveal additional financial-aid-only information about Student
Student = InfoSys::Student;
Student <# objecttype
getIncome: func () : real;
getLoansTotal: func () : real;

end;
end;

module implements InfoSys, Registrar, FinancialAid;
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type
Student = objecttype
-- The methods revealed in the interfaces
getName: func () : string;
getAddress: func () : string;
getGPA: func () : real;
getNumCredits: func () : real;
getIncome: func () : real;
getLoansTotal: func () : real;

-- Additional methods
populateFromDatabase: proc (integer);

end;

const
class StudentClass
var
name, address : string;
GPA, numCredits : real;
income, loansTotal : real;

methods
function getName () : string
begin
return name;

end;
function getAddress () : string
begin
return address;

end;
function getGPA () : real
begin
return GPA;

end;
function getNumCredits () : real
begin
return numCredits;

end;
function getIncome () : real
begin
return income;

end;
function getLoansTotal () : real
begin
return loansTotal;
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end;

procedure populateFromDatabase (studentId : integer)
begin
-- Since we don’t actually have a database,
-- just put in some made-up data.
name := "John Smith";
address := "123 Ocean Avenue\nSanta Monica, CA";
GPA := 3.86;
numCredits := 102.4;
income := 65536.0;
loansTotal := 16384.0;

end;
end;

function getStudent (studentId : integer) : Student
var s : Student;
begin
s := new StudentClass;
s.populateFromDatabase(studentId);
return s;

end;

end;

-----------------------------------------------------------------
-- A program using both Registrar and FinancialAid interfaces. --
-----------------------------------------------------------------

program StudentTest;

-- By importing all three interfaces, we should have access
-- to the union of the Student methods from each.
import InfoSys, Registrar, FinancialAid, IO;

var
theStudent: InfoSys::Student;
GPA, income: real;

begin
-- Look up some student
theStudent := InfoSys::getStudent(47);
IO::printString("Got a student named "

^ theStudent.getName() ^ "\n");
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-- We can get the student’s GPA
GPA := theStudent.getGPA();
IO::printString("Student’s GPA is ");
IO::printReal(GPA);
IO::printString("\n");

-- We can get the student’s income
income := theStudent.getIncome();
IO::printString("Student’s income is ");
IO::printReal(income);
IO::printString("\n");

end;
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