
Properties of Real-World
Digital Logic Diagrams

Michael Lazzareschi
Senior Project in Computer Science

Pomona College

Advisors:
Christine Alvarado

Tzu-Yi Chen

May 1, 2006

Contents

1 Introduction 2
1.1 Digital Logic Diagram Recognition . 2
1.2 Gathering Diagram Specific Information . 6

2 Methodology 7
2.1 Study Details . 7
2.2 File Conversion . 7
2.3 Accessing Information About the Order and Labels of Strokes 8
2.4 Accessing Information About the Order of Input and Output Wires Relative

to Gates . 11
2.5 Identifying Symbols with High Ink Density 12

3 Results and Discussion 14
3.1 The Order of Strokes in Gates . 14
3.2 The Number of Strokes in Gates . 15
3.3 The Number of Strokes in Wires . 16
3.4 The Order of Input and Output Wires Relative to Gates 17
3.5 The Ink Density of Gates . 18

4 Conclusion 20

5 Acknowledgments 20

1

1 Introduction

Originally, technical diagrams in private industry and education were drawn only on paper.

While this method of drawing is convenient for creating diagrams, it makes analyzing the

diagrams challenging. With the advent of computers came the prospect of automating many

tasks relating to diagrams that are tedious to perform by hand. Once diagrams are stored in

computers, it is possible to add information about the names of each symbol in the diagrams.

If the individual symbols in diagrams are identifiable to the computer, the diagrams can be

analyzed efficiently. For example, if an engineer draws an electrical circuit diagram and

the computer is able to recognize each symbol in the diagram, the engineer could run a

simulation program on the diagram to test if the circuit performs the intended function.

Without the use of computers, this task would have to be performed visually, requiring more

time, and, introducing the possibility of human error. Initially, computers provided this

advantage in diagram analysis at the cost of the ease of drawing that a pencil and paper

provide. The simplest methods of diagram entry required extensive use of the computer

mouse. However, during the time that computers have been used to store diagrams, the

methods of inputting diagrams have evolved. The invention of digitizing tablets and pens

provided a great advancement in the ability of engineers and academics to input diagrams

to computers. Using a digitizing tablet and pen, users can draw naturally and have their

diagrams stored on computers without any additional difficulty.

Ideally, the process of labeling each symbol in a diagram, known as diagram recognition,

would be fully automated so that the user need not specify the identity of a symbol every

time he or she draws it. An effective diagram recognition system that allows the user to

draw naturally, without requiring any additional labeling input from the user, must rely

on information about the ways that people draw diagrams to make decisions about how to

label each symbol. In this paper, we analyze digital logic diagrams drawn by students in

a real hardware engineering course in order to gather information about how the symbols

are drawn. To better understand the need for diagram-specific information, we must first

introduce the process and challenges of diagram recognition as well as the basics of the digital

logic domain.

1.1 Digital Logic Diagram Recognition

Diagram recognition is the process of taking a diagram and labeling each meaningful sym-

bol with the correct name. This process has been approached using different methods, but

2

all methods include two basic steps: segmentation and symbol identification. During seg-

mentation, groups of primitive components, often line segments and arcs, are identified as

potentially meaningful symbols. In symbol identification, potential symbols are labeled with

their names. The result of the whole process is a labeled version of the diagram. While the

set of potential symbols resulting from segmentation may contain groups of primitive compo-

nents that overlap, the final result after the symbol identification step must be a consistent

mapping of primitive components to labeled groups. Segmentation and symbol identification

may be approached discretely and successively as in [4] or simultaneously as in [1]. For a

more complete discussion of recognition systems see [1, 4, 6].

To perform these two steps, recognition systems take advantage of a variety of assump-

tions about how diagrams are drawn. For instance, during segmentation, it may be useful

to make an assumption about the range in numbers of primitive components that compose

symbols. If we know that no symbol contains more than five primitive components, we can

decrease the number of potential symbol groups by removing groups containing more than

five components from consideration. During symbol identification, it may be useful to make

assumptions about both the number and type of primitive components that compose each

type of symbol. For instance if we are trying to recognize triangles, we know that they are

comprised of three line segments, so we can determine that any group of components that

does not consist of three line segments cannot be a triangle symbol.

In designing a recognition system, it is essential to identify assumptions that, when made,

will provide accuracy in recognition without imposing unnatural restrictions on the way in

which users draw. Assumptions that place unnatural restrictions on drawing include any

assumption that forces the user to avert his or her attention from drawing in same way he or

she would on paper. For example, consider a recognition system that requires users to pause

after drawing a symbol, and then click a box specifying the proper label for the symbol.

While this system may perform recognition with perfect accuracy, it forces the user to draw

in an unnatural manner. On the other hand, assuming that every symbol was drawn using

at least one stroke of the pen does not impose any restrictions on drawing. However, because

this assumption is so basic, it does not aid recognition.

Good recognition systems adopt assumptions that improve recognition accuracy by im-

posing natural restrictions on users. When drawing family tree diagrams, such an assump-

tion might be that users draw marriage connections around the same time as they draw

the symbols for the people who are married. While some users might draw all the marriage

connections once they have drawn all the symbols for people, the assumption holds true for

3

the vast majority of users because they naturally draw this way; for most users, because of

this assumption, the system can gain accuracy without imposing unnatural restrictions.

One assumption common to current recognition systems is that the type of diagram on

which a given recognition system operates is restricted; a diagram recognition system is

designed to operate in a single diagram domain because the problem of universal recognition

(across all domains) is too hard. In this study, we focus on gathering information within

the domain of digital logic diagrams. Figure 1 shows the set of standard digital logic gates

that appear in diagrams. These gates are connected by line segments that represent wires.

As can be seen in Figure 2, a sample digital logic diagram, typical diagrams consist of one

or more gates connected by wires. There is at least one input wire and one output wire to

the whole diagram. These inputs and outputs are often labeled with text; in Figure 2 the

inputs are labeled A, B, and CarryIn and the output is labeled CarryOut.

Figure 1: Digital Logic Gates: (a) AND (b) OR (c) NOT (d) XOR (e) NAND (f) NOR

Figure 2: A Digital Logic Diagram

We study how digital logic diagrams are drawn in order to identify good assumptions.

This is a difficult task due to the variety in drawing techniques that are possible. While it

is possible that a user could draw diagrams in an ordered, logical manner, with one stroke

for each primitive component, it is also possible that a user could create diagrams with

identical appearances by drawing a series of points in random order, or in any order using

4

any number of strokes. The greater the variety in users’ drawing methods, the harder the task

of recognition because the underlying complexity of the process that a diagram recognition

system utilizes to make labeling decisions reflects the variety of ways in which the symbols

are drawn.

The domain of digital logic diagrams presents unique challenges to recognition because

of the nature of the symbols. Many of the gates are similar in appearance. For instance

the differences between the form of an AND gate (Figure 1(a)) and the form of an OR gate

(Figure 1(b)) are only subtle variations in curvature. Even more striking is the difference

between the form of an AND gate and the form of a NAND gate (Figure 1(e)). The inclusion

of a small circle changes the function of the gate entirely. The difficulty of recognizing symbols

that have only subtle differences in form is compounded by the fact that people often draw

sloppily. For instance in Figure 2, the right sides of the OR gates are curved, whereas the

proper form of an OR gate would be more pointed as in Figure 1(b).

In addition, the fact that the form of wires is not defined by a consistent shape leads to a

great variety in possible drawing styles. For example in Figure 2, some wires such as the wire

representing the input A, are straight lines, while other wires are drawn with right-angled

jogs to allow them to connect two gates that are not aligned horizontally. Other wires include

curved sections to denote the fact that they are meant to pass over the wires beneath the

curved sections rather than intersect with them. While including curved sections in wires to

indicate a lack of intersection is the correct method, it is common for users to omit curved

sections because humans can answer the question of whether two wires that cross in a diagram

are meant to intersect in the circuit by looking at the surrounding context. Similarly, it is not

unusual for students who are less practiced in drawing digital logic diagrams than engineers,

to draw curved wires in order to connect two gates that are not aligned horizontally rather

than including right-angled jogs as in Figure 2. Finally, wires introduce complexity to the

task of recognition because the symbol for a single wire in a circuit might be drawn using

multiple strokes, which were drawn at very different times. Often, in large diagrams, users

will draw part of wire when they finish drawing a gate to denote the output of that gate,

draw some other part of the diagram, and then come back to the half-drawn wire once they

are ready to connect it to the gate to which it is an input. In these cases, a recognition

system must rely on other information than temporal proximity of strokes to determine

which strokes form a single wire. Because so much variety exists in diagrams, we must

examine them to determine how they are commonly drawn, and, using this information,

determine assumptions that allow the user to draw naturally.

5

1.2 Gathering Diagram Specific Information

In this paper, we begin the process of designing a digital logic diagram recognition system

by gathering information about how the diagrams are drawn. To this end, we address five

questions:

1. Are gates drawn with consecutive strokes?

2. What is the average number of strokes that compose each type of gate? Specifically,

are gates generally comprised of more than one stroke?

3. Are wires generally comprised of one stroke?

4. When do users draw gates relative to the input and output wires that connect to them?

5. Do bounding boxes fit tightly around groups of strokes composing gates have higher

percentages of inked pixels than similar bounding boxes fit to groups of strokes includ-

ing wires?

We chose these five questions after considering several others because each is a question

that can feasibly be answered, and whose answer will assist during recognition. The answers

to questions 1 and 4 are important during segmentation because, if there are trends in

the order in which users draw symbols, it may be possible to take advantage of them when

forming potential symbol groups. Similarly, the answers to questions 2 and 3 may be useful in

devising a segmentation scheme because they will provide a maximum and minimum number

of strokes that compose potential symbol groups. Questions 2 and 3 are also important to

the symbol identification step because it will be useful to compare how many strokes are in

a potential symbol group and the average number of strokes in each type of symbol. The

answer to question 5 may be helpful to segmentation as well because, if groups of strokes

that have higher ink density, meaning that they compose gates that have a higher percentage

of inked pixels in tight bounding boxes than other groups, the segmentation scheme can give

preference to symbol groups which have high ink density when creating potential symbol

groups.

6

2 Methodology

2.1 Study Details

We pursue the five questions by analyzing data that came from real-world digital logic

diagrams. Our data consists of thirty-two diagrams drawn by ten students in Engineering 85

at Harvey Mudd College, a digital electronics and engineering course (for more information

about this course see [5]). Each subject was given a tablet computer that he or she agreed

to use in class to take notes, and outside of class, to work on course assignments. The main

goal in data collection is to ensure that the data is authentic in order to glean information

that is useful for designing a recognition system with high performance on diagrams drawn

without instruction. The subjects were asked to use the Windows Journal c© program to take

notes because this program has many features that make taking notes feel natural. While

Windows Journal c© does have recognition features, no recognition was performed while the

subjects took notes. In addition, because we want data that was created naturally, in the

course of work, we did not give the subjects any special instructions about how or when

they should draw diagrams. For this reason, different subjects drew different numbers of

diagrams in the week during which we collected data.

2.2 File Conversion

The original notes taken by the subjects were contained in jnt (Windows Journal c© format)

files. In order to answer our research questions, we developed semi-automated techniques

to analyze the data. These techniques need access to information about which points of

ink compose each stroke and information about when each stroke was drawn. In addition,

the questions concerning the order of strokes in gates and the number of strokes in symbols

(questions 1, 2, and 3) rely on information about the labels of groups of strokes that form

symbols. For example, to determine the average number of strokes in gates, each gate must

be labeled with its type. While the other questions (4 and 5) also concern labeled groups of

strokes, they require that the diagrams are labeled differently than the first three questions.

Question 4 concerns the order in which input and output wires are drawn relative to the

gates to which they connect. To answer this question, not only does each symbol need to be

labeled, but also the symbols to which each symbol connects need to be labeled as adjacent

symbols. To answer question 5, the diagrams need to be labeled even more extensively;

groups of strokes that do not even compose symbols must be labeled as symbols in order

7

to compare their properties with groups that do form symbols. Because information about

the strokes in diagrams is not easily accessible in jnt files and it would be difficult to label

symbols in jnt files, we converted the diagrams to more convenient formats.

We extract the diagrams from Windows Journal c© notes, perform a series of procedures to

convert the diagrams into formats that are conducive to analysis, and hand label the symbols

in each diagram. Because file format conversions are intricate and require precise knowledge

of the formats involved, we adapt existing systems for conversion. Table 1 shows the file

format conversions that are used on the diagrams, in the order that they are performed, as

well as the program used to perform each conversion, which questions are examined as a

result of the conversion, and the original author of the program used for conversion.

Table 1: Different Diagram File Format Conversions in Order of Use

From To Program Question Original
Format Format Used Numbers Author
jnt Journal xml Tablet Journal C. Chesnut
Journal xml ink Table Journal 4, 5 C. Chesnut
ink ink.gif Data Collector MIT CSAIL
ink.gif drs InkConverter MIT CSAIL
drs MIT xml drsXmlConverter MIT CSAIL
MIT xml labeled xml labeler 1, 2, 3 MIT CSAIL

2.3 Accessing Information About the Order and Labels of Strokes

To examine the questions about the order of strokes in gates and the number of strokes

in symbols (questions 1, 2, and 3), we must gather basic information about the strokes in

diagrams as well as information about the labels of strokes. The first step is to convert the

diagrams to labeled xml. Initially, the diagrams are located in Windows Journal c© docu-

ments, which may also contain hand-written notes, typed text, and images. The information

in these files is in a proprietary format, but fortunately Microsoft R© provides functions that

convert jnt files to Journal c© xml files, in which the information is more accessible. This step

is performed using Tablet Journal, an open-source utility provided at [3]. Once a Journal c©
xml file has been created, Tablet Journal is used to deserialize the desired page in the file

that contains a diagram. In the deserialization process, the information about what is con-

tained on that page is extracted from the xml and stored in C# objects. We altered Tablet

8

Journal so that as the xml is being deserialized, it creates a C# ink object that stores infor-

mation about each stroke of the pen including the time that it was drawn and which points

it includes. Using this feature, each page in Journal c© xml files that contains a digital logic

diagram is converted to an ink file.

Figure 3: A Partially Labeled Diagram

Once the pages containing diagrams are stored in ink files, the remaining steps in convert-

ing the diagrams to labeled xml are performed using utilities created by M. Oltmans and A.

Adler from [7]. First, the ink files, each of which contains information about all the strokes

from a page of a Journal c© file are cropped so that they contain only information about the

strokes in a single diagram and saved as ink.gif files using the Data Collector utility. Next,

the InkConverter and drsXmlConverter are used to convert the ink.gif files to drs files and

then the drs files to xml files. With xml files that contain single diagrams, the labeler, seen

in Figure 3, is used to label each group of strokes that compose a symbol by hand. In the

labeler utility, groups of strokes and substrokes can be circled using the digitizing pen and

labeled by selecting the appropriate label, such as “and gate”, from a pull-down menu. In

Figure 3, the bottom wire has just been circled and the “wire(s)” option has been selected.

9

It is important to note that we consider a wire symbol to be the entire path from one end

point to the other even if it is not straight or includes a jog.

Figure 4: Portions of a Labeled xml File

The results of these conversions are labeled xml files which contain the necessary infor-

mation about strokes in an easily accessible format. Figure 4 shows the general format of

a labeled xml file. Toward the top of a file there is a list of point objects representing all

the points in the diagram. These point objects store unique ids as well as the time they

were drawn and the x and y coordinates of the point in the diagram. The time that each

point was drawn is extrapolated using the time at which the stroke containing the point was

drawn, when that point was drawn within the stroke (i.e. how many points have been drawn

in the stroke up until now), and the sampling rate of the digitizing pen (i.e. the frequency at

which points are created). Shape objects in labeled xml can be categorized as either strokes,

substrokes, or symbols. As can be seen in Figure 4, each object with stroke information

contains a unique id, the time the stroke was drawn, and a list of the point ids of points

that are contained in that stroke. Objects containing substroke information contain similar

fields, but they are different from objects storing stroke information because they are created

in the labeling process when part of a symbol is drawn using a stroke that composes part

of another symbol as well. In these cases, a substroke is created from the points that are in

10

the symbol being labeled. Substroke shape objects each store an additional “subStrokeOf”

field that contains the id of the stroke with which it shares points. Finally, there are shape

objects which store information about individual symbols. These objects contain the color

of the symbol when it is displayed, a unique id, the type of symbol it was labeled as (in this

case “or”), the time that the last stroke in the symbol was drawn, and a list of ids of the

strokes and substrokes contained in the symbol. Within all the point and shape objects in

a labeled xml file, the information about when strokes are created, where they are located,

and what symbols they compose is stored.

After we create labeled xml files for the diagrams, we use an automated tool that we built

to analyze the information that is available in the shape objects of the xml files. This tool

scans each xml file line-by-line three times. The first time the xml file is viewed, the number

of each type of shape object is recorded: stroke shape objects, substroke shape objects, and

symbol shape objects. The second time the xml file is viewed, the id of each shape, the time

it was drawn, and the label, are recorded along with the number of strokes in each shape.

The final time the xml file is scanned, the ids of each stroke in symbol shape objects are

recorded.

Once this information has been collected from the labeled xml files, our utility finds how

many gates are drawn with non-consecutive strokes. It examines each gate, recording each

stroke that is not contained in the gate, but was drawn at a time that falls in between the

time that the first stroke in the gate was drawn and the time that the last stroke in the gate

was drawn. We record all such strokes that were drawn during the time that a gate was

drawn but are not part of the gate. We find out how often gates are comprised of a single

stroke by checking the number of strokes in each gate shape object. Similarly, we find out

how often wires are comprised of more than one stroke by checking the number of strokes in

each wire shape object.

2.4 Accessing Information About the Order of Input and Output

Wires Relative to Gates

As discussed above, answering the question about the order in which wires are drawn requires

a different kind of labeling. In order to assess when gates are drawn relative to their input

and output wires, the wires adjacent to gate symbols must be labeled according to their

relationship with the gates to which they connect. Rather than designing a different, perhaps

more complicated labeling system than that used in the previous section, we take advantage

of the natural ability of humans to label symbols visually. We use the Ink Player utility,

11

also written by [7], to load the diagrams after they have been converted to ink.gif format.

This utility allows the user to play the diagram back, stroke by stroke, in the order in which

strokes were drawn. We play back the strokes in each diagram and take note of when each

gate was drawn relative to the wires that connects to it.

2.5 Identifying Symbols with High Ink Density

In order to answer the question about ink density, the ink density for groups of strokes that

do not compose symbols must be computed in addition to the ink density of groups that do

compose symbols. The ink density of a group of strokes is defined by the percentage of space

in a tight bounding box around the group that is covered by the strokes. In [4], Gennari

et al. propose ink density as a useful statistic in the segmentation of analogue circuits. It

is possible that because both analogue circuits and digital logic diagrams are comprised of

two-dimensional shapes connected by a series of predominantly one-dimensional wires, ink

density may be useful in segmenting gates in digital logic diagrams. Because the stroke

segments in wires are often longer than those in gates, when wires are added to a group of

strokes composing a gate, the size of the bounding box may increase, while the percentage

of the bounding box that is covered by the strokes in the group drops.

Our method for calculating ink density is inspired largely by the method used by Gennari

et al. We gain insight into the relevance of ink density to the segmentation of digital logic

diagrams by first identifying groups of strokes with high ink densities and then producing

a consistent mapping of these symbol candidates to the diagram, such that there are no

overlapping symbols candidates.

For a given group of strokes, ink density is calculated through a series of steps. First, a

tight bounding box is fit to the group. Because a system using the tightest bounding box

would find symbol groups that compose straight lines, which are not gates, the larger of two

tight bounding boxes taken at 45◦ angles from each other is used. Next, hidden ink, ink that

is used as an approximation of the strokes of the pen when the pen is not touching the tablet

surface, is added to the group of strokes. More precisely, a stroke of hidden ink is the stroke

that is implicitly drawn between the end point of one actual stroke and the start point of

the subsequently drawn stroke. Hidden ink is added because gates are often drawn as an

outline of a shape, leaving the middle of the shape without any strokes. Adding hidden ink

into the calculation of ink density tends to increase the density of gates. Once the hidden

ink is added, the rectangle within the bounding box is rendered to a bitmap image and the

percentage of pixels that contain ink is returned as the ink density.

12

In identifying groups of strokes with high ink density, we make three assumptions about

the way in which the user draws that affect how we interpret the results. Firstly, we assume

that the user draws gates using consecutive strokes. The validity of this assumption will be

discussed in section 3.1, which discusses the results of each question. Secondly, our method

assumes that each gate is drawn using more than one stroke. The validity of this assumption

will also be discussed in section 3.2. The final assumption is that each gate is drawn using

strokes that are completely contained in the gate. There are three diagrams in our data-set

in which a single stroke is part of a wire and a gate. In these cases, we manually broke the

stroke in question into two consecutive substrokes so that the part of the stroke in the gate

could be considered separate from the part in the wire.

Figure 5: A Sample Segmentation Based on Ink Density

Given these assumptions, we identify the beginning stroke and the ending stroke in groups

of strokes with high ink density through the following steps. First, the best ending strokes

are found by considering each stroke in the diagram to be a potential beginning stroke and

picking the stroke for which adding the next chronological stroke to the group decreases the

ink density by more than 20%. Next, the beginning stroke that yields the highest ink density

for each of the ending strokes found is selected. Starting with each ending stroke, consecutive

former strokes are added until the ink density of the group of strokes drops. Once there is

a list of groups of symbols with high ink density specified by beginning and ending strokes,

overlapping groups are removed, giving preference to groups with higher ink density. The

result is a consistent list of groups of strokes with high ink density. This list is displayed

graphically using a different color to denote each high density group as in Figure 5. In this

example, each gate is found correctly except the OR gate on the left side of the diagram

which was found in a group with its input wires. In addition, this example shows that many

groups of strokes forming text were found to have high density. For more detail about the

method of ink density calculation used in this paper see [2].

13

3 Results and Discussion

Applying the methods of analysis described above to our data, we arrive at answers to the

five research questions. The answers to these questions aid in designing a recognition system

because they inform whether or not certain assumptions can be made about how digital logic

diagrams are drawn. Table 2 shows how many gates and diagrams each subject drew. Since

we gave the subjects no instructions on how many diagrams to draw or how to draw them,

the number of diagrams each subject drew ranges from one to seven and the number of gates

each subject drew ranges from two to twenty-four.

Table 2: Summary of Our Data

Subject # of Diagrams # of Gates
1 7 20
2 3 13
3 4 12
4 1 2
5 2 10
6 2 8
7 1 6
8 3 12
9 2 9
10 7 24
Total 32 116

3.1 The Order of Strokes in Gates

The results regarding the order of strokes composing gates suggest that assuming that gates

are drawn using consecutive strokes is a valid assumption for the majority of gates, but that

a significant portion of the subjects drew at least one gate using non-consecutive strokes.

Among the 32 diagrams in the data-set, 13% (4) include gates with one or more stroke that

was not drawn consecutively. In terms of quantities of gates, out of the 116 total gates in the

data-set, 5% (6) were drawn with non-consecutive strokes. Although it is clear that gates

are drawn using consecutive strokes the majority of the time, since many of the subjects (3

of the 10 subjects) drew at least one gate using non-consecutive strokes, it appears that it

is not uncommon for a user to draw the occasional gate using non-consecutive strokes.

14

Further examination of the diagrams in which gates with non-consecutive strokes occur,

shows that every gate with non-consecutive strokes was drawn such that the majority of the

gate was drawn using consecutive strokes. However, a single stroke was added to the gate

after the subject drew an average of 10 stokes while adding a label or drawing other parts of

the diagram. The single, non-consecutive stroke in each case appears to have been added to

correct a part of the gate that was not fully connected when the gate was drawn, or, simply

to trace over an existing part of the gate, perhaps while the user contemplated what to draw

next. A robust recognition system may assume that most gates are drawn using consecutive

strokes, but take into account the fact that some gates may not be drawn in this manner by

assuming that gates containing non-consecutive strokes often contain only a single one that

spatially overlaps at least part of the consecutively drawn strokes.

3.2 The Number of Strokes in Gates

The results regarding the average number of strokes in each type of gate, shown in Table 3,

suggest that it would be risky to create a recognition system that relies on the assumption

that gates are drawn using more than one stroke, but that certain types of gates are more

prone to being drawn in a single stroke. AND gates, which are the most commonly drawn

type of gate, are frequently drawn in a single stroke. The average AND gate in our data-set

is drawn in just 1.7 strokes; 38% of all the AND gates in the data-set were drawn in one

stroke. The average number of strokes in OR gates, the second most frequent type of gate

in our data-set, is 2.3 and thus greater than 2. However, as evidenced by the high standard

deviation, many OR gates were drawn in one stroke; 33% of the OR gates in the data-set

were drawn in one stroke.

While several AND and OR gates were drawn in single strokes, no NOT gates were drawn

in fewer than two strokes, perhaps because the form of NOT gates, as defined in Figure 1,

consists of two separate, adjacent shapes, a triangle and a circle. Similarly, XOR gates were

never drawn in one stroke, likely because the shape of the XOR gate includes an arc that

is not connected to the rest of the gate. Although NAND and NOR gates were not drawn

enough times to state the average number of strokes in each type of gate with any certainty,

it is likely that because the forms of these gates include circles similar to the one in the form

of a NOT gate, NAND and NOR gates are usually drawn in more than one stroke.

The final type of gate, referred to as “unknown” in Table 3, is the non-standard gate

shown in Figure 6. While this gate is not a standard gate, it appears once in each of two

diagrams drawn by different subjects in their class notes during the same class session.

15

Table 3: Statistics Concerning the Number of Strokes in Each Type of Gate and Wires

and or not xor nand nor unknown wire connector
total gates 58 24 16 11 4 1 2 288 8
total strokes 105 60 35 35 13 3 11 338 8
ave. strokes/gate 1.7 2.3 2.2 2.7 3.3 3 5.5 1.1 1
st. dev. 0.8 1.8 0.4 1.3 0.5 0 0.7 0.8 0

It is likely that the subjects were copying a diagram drawn by the professor as part of a

lecture. The occurrence of this non-standard gate raises an important point, which is that

a recognition system used in the classroom setting would ideally be versatile enough to

attempt to recognize unknown symbols as unknown rather than labeling them incorrectly.

In the domain of digital logic diagrams, it is possible that the number of strokes in unknown

symbols could be useful in labeling them as unknown because, as in this case, the average

number of strokes in the unknown symbol is noticeably higher than the average number of

strokes in the known gates. Similarly, a recognition system could take advantage of the fact

that only AND and OR gates are drawn using a single stroke, because if a single stroke

is found to form a symbol during segmentation, and other information indicates that it is

unlikely that the symbol is a wire, the label can be narrowed down to either AND or OR

gate.

Figure 6: The Unknown Gate

3.3 The Number of Strokes in Wires

The results regarding the number of strokes in wires, also contained in Table 3, show that

the average wire is comprised of roughly one stroke, but that an interesting pattern occurs

when wires are drawn using more than one stroke. Only 10 % of wires contain more than

16

one stroke, and only 2% of wires contain more than two strokes. Therefore, a recognition

system could take advantage of the assumption that wires are usually comprised of one

stroke. However, it should be noted that in the cases in which wires are drawn in more

than one stroke, recognition may be further complicated by the fact the wires are often

comprised of strokes that were not drawn consecutively. While only 7% of the total wires in

the data-set were drawn using non-consecutive strokes, 71% of the wires drawn using more

than one stroke were also drawn using non-consecutive strokes. One explanation for the high

percentage of multiple-stroke wires that contain non-consecutive strokes is that it is common

for subjects to draw part of a wire as output from a gate, draw other parts of the diagram,

and only finish drawing the wire once they are ready to draw the gate to which the wire

inputs. It is possible that a recognition system could take this situation into account by

looking for two non-consecutive strokes that each are linear, spatially close to each other on

one of their ends, and spatially close to a gate on their other end.

3.4 The Order of Input and Output Wires Relative to Gates

The results for the question concerning the order in which input and output gates were

drawn relative to the gate to which they connect, shown in Table 4, give a greater picture of

the variety of ways in which wires are drawn. They show that it is not safe to assume that

users draw diagrams in order from input to output. In order to assess when gates are drawn

relative to the input and output wires that connect to them, we break down the possible

cases. Each gate can either be begun before, or after the wires that serve as inputs to them.

Similarly, each gate can either be begun before, or after the wire that serves as an output

to it. For each gate we record when the input wires were drawn and when the output wires

were drawn. As can be seen from Table 4, in 60% of the gates, the subject draws the input

wires, then some part, if not all of, the gate, and then the output wire.

However, for 36% of the gates, the subjects drew one or more input wire after beginning

the gate. In these cases, subjects often drew several of the gates first, before drawing

any wires, perhaps to sketch the basic function of the diagram before filling in the details.

Another interesting result is that it was more common for subjects to draw in reverse logical

order, drawing the output first, then beginning the gate, and then drawing inputs, than it

was for subjects to draw the inputs and the output before beginning the gate (4 vs. 1). This

result seems fitting since if a subject draws in reverse logical order, he or she is still drawing

wires and gates one after the other rather than drawing all connecting wires to a gate before

drawing the gate.

17

Table 4: When Gates Were Drawn Relative to Adjacent Wires

Conditions
A: Gate is begun after all inputs and before output
B: Gate is begun before at least one input and before output
C: Gate is begun after all inputs and after output
D: Gate is begun before at least one input and after output

A B C D
number of gates 69 42 1 4
% of gates 60 36 1 3

3.5 The Ink Density of Gates

Our results regarding ink density, shown in Table 5, indicate that segmenting using ink

density is not completely reliable. Given that the goal of segmentation using high ink density

is to segment groups of strokes comprising gates, of the 116 gates in our data-set, only 33%

were segmented correctly. 25% of the gates were found to be in groups with high ink density

only when those groups included a section of wire. Many of these mis-segmented groups

contain strokes that form a gate as well as relatively short strokes that form the inputs to

that gate such as the OR gate in Figure 7(a). 11% of the gates were segmented incorrectly

becuase only part of the gate was segmented. This type of mis-segmentation occurs mostly

with gates that have sections that add area to the bounding box of the gate without adding

a compensating amount of pixels containing ink, such as the NOT gate in Figure 7(b).

The triangle part of the gate has a higher ink density than the whole gate including the

circle. This type of mis-segmentation also occurs with NOR and NAND gates which have

circles, and with XOR gates which have an extra arc that is not attached to the rest of the

gate. While these features of the NOT, NAND, NOR, and XOR gates may be beneficial to

an assumption based on the number of strokes per gate, as discussed above, they are not

beneficial to an assumption based on the high ink density of the whole gate.

Although the rate of successful segmentations does seem not high, we have not taken

into account the fact that the assumptions we made in designing our system (as described in

Section 2.5) were not met in many cases. 6 gates are comprised of non-consecutive strokes. It

is possible that these gates were mis-segmented because of this assumption. If these 6 gates

were drawn using consecutive strokes, and were segmented correctly, the percentage of gates

segmented correctly would increase to 44%. In addition, our segmentation system assumes

that each gate is comprised of more than one stroke. To test if this assumption affects

18

Table 5: Results of Segmentation Based on Ink Density

correctly missed with missing extra wires and with other with other
segmented completely wires part missing part gates gates and wires

38 13 29 11 14 4 (2 groups) 7 (3 groups)
% 33 11 25 10 12 3 6

Figure 7: Examples of Mis-segmented Gates

segmentation, we manually split all 30 of the gates drawn in one stroke into two strokes so

that the gates were comprised of two consecutive strokes. When we performed segmentation

on those gates after making this change, 25 of these gates were segmented correctly. Figure

8 shows an example in which a gate that was missed initially, when it was comprised of

one stroke, is segmented correctly once it is split into two strokes. If we take into account

the correct segmentation of these 25 gates, 63% of all gates were segmented correctly. If

we take into account both the 25 gates that would be segmented correctly if they were

comprised of two strokes, as well as the 6 gates that may have been segmented correctly

if they were comprised of consecutive strokes, 69% of the gates (63) would be segmented

correctly. Although this percentage does not indicate a perfect segmentation, it shows that

gates do have a tendency to have high ink densities. Unfortunately, groups of wires, such

as the parallel wires in Figure 7(c), also have high ink densities; compared to the 38 to 63

gates that were segmented correctly, 29 groups included only wires. These results also show

that using ink density to segment the gates in diagrams is much more effective when it is

not based on the assumption that gates will be drawn in a single stroke. One additional

result is that segmentation of gates using ink density would likely have to be performed only

if all the text in the diagram has been removed; of the 500 or so groups found with high ink

19

density in our data-set, roughly 75% contained only text.

Figure 8: Example of Difference in Segmentation When Gates Have Multiple Strokes

4 Conclusion

We have examined five research questions that relate to the manner in which digital logic

diagrams are drawn by users in the course of their everyday work. Possible questions for

further research include: does pen speed differ between drawing wires and drawing gates,

what is the range in the number of primitive components that compose a wire (this depends

primarily on the number of jogs and arcs), and is there a common orientation for digital logic

diagrams (e.g. do people usually draw the input side of gates on the left and the output side

on the right)?

In this project, we learned valuable information about the ways users draw: they often

draw gates using only consecutive strokes; they draw gates in a single stroke a significant

amount of the time; they usually draw wires in single strokes, but when they do not, they

often draw them using non-consecutive strokes; they do not always draw in the order of

input wires, gate, and then output wire, in fact they draw the input wires to a gate after

they begin drawing the gate over a third of the time; finally, users do not draw gates with

significantly higher ink density than groups of strokes that contain wires. Overall, these

results show that, while there is variation in the ways in which people draw digital logic

diagrams, there are certain trends that come through. The trends found in this paper can

be used in conjunction with others that may emerge from future research in the creation of

a recognition system.

5 Acknowledgments

This work was made possible by the generosity of Michael Oltmans and Aaron Adler from

the Computer Science and Artificial Intelligence Laboratory at MIT. They provided not only

access to invaluable code but also helpful advice. This work was also greatly accelerated by

20

the work of Casey Chesnut. Finally, the inclusion of ink density calculations was made

possible by the work of Dan Barcay.

References

[1] C. Alvarado and R. Davis. Sketchread: A multi-domain sketch recognition engine. Pro-

ceedings of UIST 2004, 2004.

[2] D. Barcay and M. Lazzareschi. Digital logic diagram segmentation by ink density. final

project report for CS 153: Computer Vision, 2005.

[3] C. Chesnut. Converting journal notes to xml, svg, and

onenote. http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dntablet/html/tbconJournXML.asp, 2005.

[4] L. Gennari, L.B. Kara, T.F. Stahovich, and K. Shimada. Combining geometry and do-

main knowledge to interpret hand-drawn diagrams. Computers and Graphics, 29(4):547–

562, 2005.

[5] S. Harris. Engineering 85: Digital electronics and computer engineering.

http://www3.hmc.edu/ sharris/class/e85/, 2006.

[6] L.B. Kara and T.F. Stahovich. Hierarchical parsing and recognition of hand-sketched

diagrams. 17th ACM User Interface Software Technology (UIST) 2004, 2004.

[7] MIT Computer Science and Artificial Intelligence Laboratory. Rationale.

http://www.rationale.csail.mit.edu/index.shtml.

21

