1. Sudoku

Consider the popular game Sudoku, in which one tries to fill a 9 x 9
grid of squares with numbers subject to some constraints:

- every row must contain all of the digits 1,2, ..., 9
- every column must contain all of the digits 1,2, ..., 9
- each of the 9 different 3 x 3 boxes (look online if you don’t know
 what I’m talking about :) must also contain all of the digits 1, .
 . . , 9

A game is specified by filling in some of the boxes with numbers (in
our case M). Each game is guaranteed to have a single solution, that
is, there is only one assignment to the empty squares which satisfies all
the constraints. For the purposes of this homework, use $n_{i,j}$ to refer
to the number in row i, column j of the grid.

(a) Formalize this problem as an incremental search problem. What
 are the start state, actions, goal test, and edge costs?
(b) What is the branching factor, solution depth, and maximum
 depth of the search space? What is the size of the state space?
(c) Assuming we don’t use a heuristic, which of the following would
 you recommend for solving the incremental search formulation of
 this problem: DFS, BFS, or Iterative Deepening (ID)? Why?
(d) Assuming we use the incremental search formulation, is heuristic
 search possible? If so, provide a heuristic. If not, why not?

2. Exercise 3.15 (parts a + b)
3. Exercise 3.18

4. Exercise 3.21

5. Exercise 3.23 (if you want more practice with A*)