CS151 - Written Problem 6
Solutions

1. More Taxi prediction

(a)

(b)

Look at the Taxi cab example again from lecture notes and make
sure that you understand how we calculated 1) the filtered proba-
bility of P(CarOrTaxiz|red, yellow) 2) P(CarOrTaziz|red, yellow)

Let’s say you see a third vehicle now that is yellow. What is the
probability that this third vehicle is a Taxi?

P(X3|NY,Y,Y) = aP(Y|X3)(P(X3|C)message(C)+P(X3|T)message(T'))
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Now that you’ve seen the color of the third car, how does this
change your probability of the second part being a cab, that is,
what is P(CarOrTazis|red, yellow, yellow)?

In this case we’re dealing with smoothing since we want to ask
a question about a state where we have both information about
the observed variable up to that state as well as in the future.

P(X3|NY,Y,Y) = aP(Xo|NY,Y)(P(Y|C)P(|C)P(C|X3)+P(Y|T)P(|T)P(T|X3)
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How did the smoothed estimate from (c) change from our filtered
estimate when we only had seen a red and a yellow car? Explain



qualitatively why this new estimate in (c) makes sense, given
your evidence and transition models (I am looking for an English
description here).

Our probability that car 2 was a taxi has decreased after receiving
the information that car 3 was yellow. This makes sense because
taxis are unlikely to bunch up, so seeing two of them in a row
doesnt make sense (P(T'|T") is much lower than P(C|T)). So after
seeing the second red car you become less sure that you saw a
taxi, in effect because your data doesnt fit the model very welly-
our evidence model is essentially competing with your transition
model, and they cancel each other out a bit.

2. An appealing use of HMMs is for localization: in other words, given a
map, and a set of observations of your environment, figure out where
you are. Suppose we are walking around the Claremont Colleges cam-
pus, which is roughly a 1x1 mile square (5280 feet by 5280 feet) (OK,
not quite, but close enough...). Weve been given a map, and wed like
to figure out where we are every ten seconds, down to a resolution of
1 foot.

(a)

Let’s start to formalize this as an HMM. What does each of the
hidden states X; represent? What is the domain of each state
variable? How big is this domain?

Each state X; represents the location at time ¢. The domain is a
position in the grid, the set of 1x1 foot squares on the campuses.
The size of the domain is 5280

Suppose that youre walking with a blindfold on, at roughly 2
miles per hour, trying to go straight. You can ignore obstacles
(such as buildings) for now. Whats a reasonable transition model,
P(X¢| X¢-1)?

Since we dont know what direction were walking in, the transition
model should give equal probability to all of the squares roughly
15 feet away, since 2 miles an hour is about 1.5 feet per second.

Assume that we get dropped off somewhere on the campus blind-
folded but we dont know where. Whats a good starting, prior
distribution P(X1)?



Uniform, i.e. each location is equally likely.

Suppose that every ten seconds we can stop and take our blindfold
off, and look for Smith Tower (on Pomona’s campus). If we can
see it, we measure approximately how far away it is by measuring
its apparent height. We then report the approximate distance
in 100 foot increments. What should each evidence variable E;
represent? What is the domain of each evidence variable? How
big is this domain?

Each E; should be the distance from Smith tower. The domain is
[0, 100, 200, ..., 7500] (the length of the diagonal of the spacewed
never be this far away, but we certainly cant be farther). The
size of the domain is 75.

Formalize the emission model P(E;|X})

Again, since we dont know which direction we are from the tower,
we would have a ring of equal probability at all the positions that
are F; away from the tower, with some smoothing for measure-
ment error. If we assume we can tell the direction (e.g., we have a
compass or something) then E}; gives us X, with some smoothing
around that position to account for noise.

Suppose we walk “straight” for 1 minute (60 seconds), stopping
every 10 seconds to measure our distance to Smith Tower. 1) We
want to know where we are. What HMM question is this? 2) We
want to know where we walked for that 60 seconds. What HMM
questions is this?

In the first case, this is the filtering question. Given the 6 ob-
servations of the tower, we want to figure out the hidden state
variables for those time steps. This is the most likely sequence
and can be found using the Viterbi algorithm.



