

Admin

• Assign 3 due Monday at the beginning of class (in class)

More Probability

• In the United States, 55% of children get an allowance and 41% of children get an allowance and do household chores. What is the probability that a child does household chores given that the child gets an allowance?

 $p(chores \mid allow) = p(chores, allow) / p(allow)$

= 0.41/0.55 = 0.745

Still more probability

• A math teacher gave her class two tests. 25% of the class passed both tests and 42% of the class passed the first test. What is the probability that a student who passed the first test also passed the second test?

Another Example

A patient takes a lab test and the result comes back positive. The test has a false negative rate of 2%and false positive rate of 2%. Furthermore, 0.5%of the entire population have this cancer.

What is the probability of cancer if we know the test result is positive?

Another Example

A patient takes a lab test and the result comes back positive. The test has a false negative rate of 2% and false positive rate of 2%. Furthermore, 0.5% of the entire population have this cancer.

What is the probability of cancer if we know the test result is positive?

p(cancer) = 0.005 $p(false_neg) = 0.02$ $p(false_pos)=0.02$ false negative: negative result even though we have cancer false positive: positive result even though we don't have cancer

p(cancer | pos) = ?

Another Example

p(cancer) = 0.005 p(false_neg) = 0.02 p(false_pos)=0.02

p(cancer | pos) = ?

false negative: negative result even though we have cancer false positive: positive result even

though we don't have cancer

 $p(cancer \mid pos) = \frac{p(cancer, pos)}{p(pos)}$

Another Exar	nple
p(cancer) = 0.005 p(false_neg) = 0.0 p(false_pos)=0.02 p(cancer pos) = ?	false positive: positive result even though we don't have cancer
$\frac{p(cancer, pos)}{p(pos)} = \frac{p(cancer)}{p(cancer)}$	Talse_neg) gives us the probability of the test actly identifying us with cancer $p(cancer)(1 - p(false_neg))$ $rer)(1 - p(false_neg)) + p(\neg cancer)p(false_pos)$ vays to get a positive result: cancer with a correct ve and not cancer with a false positive

Another Example

p(cancer) = 0.005 p(false_neg) = 0.02 p(false_pos)=0.02 false negative: negative result even though we have cancer

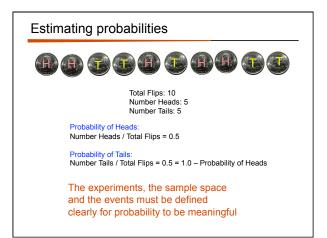
p(cancer | pos) = ?

false positive: positive result even though we don't have cancer

 $p(cancer \mid pos) = 0.1975$

Contrast this with p(pos | cancer) = 0.98

Obtaining probabilities Image: A state of the state of th



Theoretical Probability

- · Maximum entropy principle
 - When one has only partial information about the possible outcomes one should choose the probabilities so as to maximize the uncertainty about the missing information
 - Alternatives are always to be judged equi-probable if we have no reason to expect or prefer one over the other
- Maximum likelihood estimation
 - set the probabilities so that we maximize how likely our data is
- · Turns out these approaches do the same thing!

Law of Large Numbers

- As the number of experiments increases the relative frequency of an event more closely approximates the actual probability of the event.
 if the theoretical assumptions hold
- Buffon's Needle for Computing π

 http://mste.illinois.edu/reese/buffon/buffon.html

Large Numbers Reveal Problems in Assumptions

 Results of 1,000,000 throws of a die

 Number
 1
 2
 3
 4
 5
 6

 Fraction
 .155
 .159
 .164
 .169
 .174
 .179

Probabilistic Reasoning

- Evidence – What we know about a situation
- Hypothesis
 What we want to conclude
- Compute

 P(Hypothesis | Evidence)

Credit Card Application

- E is the data about the applicant's age, job, education, income, credit history, etc,
- H is the hypothesis that the credit card will provide positive return.
- The decision of whether to issue the credit card to the applicant is based on the probability P(H|E).

Medical Diagnosis

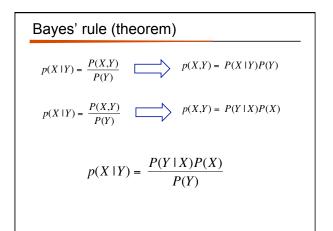
- E is a set of symptoms, such as, coughing, sneezing, headache, ...
- H is a disorder, e.g., common cold, SARS, swine flu.
- The diagnosis problem is to find an H (disorder) such that P(H|E) is maximum.

Chain rule (aka product rule) $p(X|Y) = \frac{P(X,Y)}{P(Y)} \longrightarrow p(X,Y) = P(X|Y)P(Y)$ We can view calculating the probability of X *AND* Y occurring as two steps: 1. Y occurs with some probability P(Y) 2. Then, X occurs, given that Y has occured or you can just trust the math... ©

Chain rule

$$\begin{split} p(X,Y,Z) &= P(X \mid Y,Z)P(Y,Z) \\ p(X,Y,Z) &= P(X,Y \mid Z)P(Z) \\ p(X,Y,Z) &= P(X \mid Y,Z)P(Y \mid Z)P(Z) \\ p(X,Y,Z) &= P(Y,Z \mid X)P(X) \end{split}$$

$$p(X_1, X_2, ..., X_n) = ?$$



E	Bayes rule
	Allows us to talk about P(Y X) rather than P(X Y) Sometimes this can be more intuitive Why?
	$p(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$

Bayes rule

- p(disease | symptoms)
 - For everyone who had those symptoms, how many had the disease?
 - p(symptoms|disease)
 - · For everyone that had the disease, how many had this symptom?
- p(good_lendee | credit_features)
 - For everyone who had these credit features, how many were good lendees?
 - p(credit_features | good_lendee)
 - For all the good lenders, how many had this feature
- p(cause | effect) vs. p(effect | cause)
- p(H | E) vs. p(E | H)

Bayes' rule

- $p(good_lendee | features) = \frac{P(features | good_lendee)P(good_lendee)}{P(features)}$
 - We often already have data on good lenders, so p(features | good_lendee) is straightforward
 - p(features) and p(good_lendee) are often easier than p(good_lendee|features)
 - Allows us to properly handle changes in just the underlying distribution of good_lendees, etc.

Other benefits

- Simple model lender model:
 score: is credit score > 600
 - debt: debt < income</p>

 $p(Good | Credit, Debt) = \frac{P(Credit, Dept | Good)P(Good)}{P(Credit, Debt)}$

Other benefits

It's in the 1950s and you train your model "diagnostically" using just p(Good | Credit, Debt).

However, in the 1960s and 70s the population of people that are good lendees drastically increases (baby-boomers learned from their depression era parents and are better with their money)

p(*Good* | *Credit*, *Debt*)

Intiuitively, the probability of good should increase, but Hard to figure out from just this equation

Other benefits

 $p(Good | Credit, Debt) = \frac{P(Credit, Dept | Good)P(Good)}{P(Credit, Debt)}$

Modeled using Bayes' rule, it's clear how much the probability should change. Measure what the new P(Good) is.

When it rains...

 Marie is getting married tomorrow at an outdoor ceremony in the desert. In recent years, it has rained only 5 days each year. Unfortunately, the weatherman has predicted rain for tomorrow. When it actually rains, the weatherman correctly forecasts rain 90% of the time. When it doesn't rain, he incorrectly forecasts rain 5% of the time. What is the probability that it will rain on the day of Marie's wedding?

p(rain) = 5/365p(predicted|rain) = 0.9 $p(predicted|\neg rain) = 0.05$

When it rains...

p(rain) = 5/365p(predicted|rain) = 0.9 $p(predicted|\neg rain) = 0.05$

 $p(rain \mid predicted) = \frac{p(predicted \mid rain)p(rain)}{p(predicted)}$

 $\frac{0.9*5/365}{p(predicted)}$

When it rains...

p(rain) = 5/365p(predicted|rain) = 0.9 $p(predicted|\neg rain) = 0.05$

 $p(predicted) = p(predicted | rain)p(rain) + p(predicted | \neg rain)p(\neg rain)$

 $p(\neg rain \mid predicted) = p(predicted \mid \neg rain)p(\neg rain)$ = 0.05 * 360/365

Joint distributions

- For an expression with *n* boolean variables e.g. $P(X_1, X_2, ..., X_n)$ how many entries will be in the probability table? -2^n
- · Does this always have to be the case?

Independence

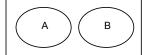
- Two variables are independent if one has nothing whatever to do with the other
- For two independent variables, knowing the value of one does not change the probability distribution of the other variable (or the probability of any individual event)
 - the result of the toss of a coin is independent of a roll of a dice
 - price of tea in England is independent of the result of general election in Canada

Independent or Dependent?

- Catching a cold and having cat-allergy
- · Miles per gallon and driving habits
- · Height and longevity of life

Independent variables

• How does independence affect our probability equations/properties?



- If A and B are independent (written ...)
 - -P(A,B) = P(A)P(B)-P(A|B) = P(A)
 - -P(B|A) = P(B)

Independent variables

- If A and B are independent
 - -P(A,B) = P(A)P(B)
 - $-\mathsf{P}(\mathsf{A}|\mathsf{B}) = \mathsf{P}(\mathsf{A})$
 - $-\mathsf{P}(\mathsf{B}|\mathsf{A}) = \mathsf{P}(\mathsf{B})$

Reduces the storage requirement for the distributions

Conditional Independence

- Dependent events can become independent given certain other events
- · Examples,
 - height and length of life
 - "correlation" studies
 - size of your lawn and length of life
- · If A, B are conditionally independent of C
 - P(A,B|C) = P(A|C)P(B|C)
 - P(A|B,C) = P(A|C)
 - P(B|A,C) = P(B|C)
 - but P(A,B) ≠ P(A)P(B)