
1 

More probability

CS151 
David Kauchak 

Fall 2010 

Some material borrowed from: 
Sara Owsley Sood and others 

Admin 

•  Assign 3 due Monday at the beginning of 
class (in class) 

More Probability 

•  In the United States, 55% of children get 
an allowance and 41% of children get an 
allowance and do household chores. What 
is the probability that a child does 
household chores given that the child gets 
an allowance? 

€ 

p(chores | allow) = p(chores,allow) / p(allow)

€ 

= 0.41/0.55 = 0.745

Still more probability 

•  A math teacher gave her class two tests. 
25% of the class passed both tests and 
42% of the class passed the first test. 
What is the probability that a student who 
passed the first test also passed the 
second test?  
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Another Example 

A patient takes a lab test and the result comes back 
positive. The test has a false negative rate of 2% 
and false positive rate of 2%. Furthermore, 0.5% 
of the entire population have this cancer. 

What is the probability of cancer if we know the 
test result is positive? 

Another Example 

A patient takes a lab test and the result comes back 
positive. The test has a false negative rate of 2% and 
false positive rate of 2%. Furthermore, 0.5% of the 
entire population have this cancer. 

What is the probability of cancer if we know the test 
result is positive? 

p(cancer) = 0.005 
p(false_neg) = 0.02 
p(false_pos)=0.02 

p(cancer | pos) = ? 

false negative: negative result even 
though we have cancer 

false positive: positive result even 
though we don’t have cancer 

Another Example 

p(cancer) = 0.005 
p(false_neg) = 0.02 
p(false_pos)=0.02 

p(cancer | pos) = ? 

false negative: negative result even 
though we have cancer 

false positive: positive result even 
though we don’t have cancer 

€ 

p(cancer | pos) =
p(cancer, pos)

p(pos)

Another Example 

p(cancer) = 0.005 
p(false_neg) = 0.02 
p(false_pos)=0.02 

p(cancer | pos) = ? 

false negative: negative result even 
though we have cancer 

false positive: positive result even 
though we don’t have cancer 

€ 

p(cancer, pos)
p(pos)

=
p(cancer)(1− p( false_ neg))

p(cancer)(1− p( false_ neg))+ p(¬cancer)p( false_ pos)

two ways to get a positive result: cancer with a correct 
positive and not cancer with a false positive 

1-p(false_neg) gives us the probability of the test 
correctly identifying us with cancer 
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Another Example 

p(cancer) = 0.005 
p(false_neg) = 0.02 
p(false_pos)=0.02 

p(cancer | pos) = ? 

false negative: negative result even 
though we have cancer 

false positive: positive result even 
though we don’t have cancer 

€ 

p(cancer | pos) = 0.1975

Contrast this with p(pos | cancer) = 0.98 

Obtaining probabilities 

•  We’ve talked a lot about probabilities, but not 
where they come from 
–  intuition/guess 

•  this can be very hard 

•  people are not good at this for anything but the simplest 
problems 

–  estimate from data! 

H H H H H T T T T T 

Estimating probabilities 

H H H H H T T T T T 

Total Flips: 10 
Number Heads: 5 
Number Tails: 5 

Probability of Heads: 
Number Heads / Total Flips = 0.5 

Probability of Tails: 
Number Tails / Total Flips = 0.5 = 1.0 – Probability of Heads 

The experiments, the sample space 
and the events must be defined 
clearly for probability to be meaningful 

Theoretical Probability 

•  Maximum entropy principle 
–  When one has only partial information about the possible 

outcomes one should choose the probabilities so as to 
maximize the uncertainty about the missing information 

–  Alternatives are always to be judged equi-probable if we 
have no reason to expect or prefer one over the other 

•  Maximum likelihood estimation 
–  set the probabilities so that we maximize how likely our 

data is 

•  Turns out these approaches do the same thing! 
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Law of Large Numbers 

•  As the number of experiments increases the relative 
frequency of an event more closely approximates the 
actual probability of the event. 
–  if the theoretical assumptions hold 

•  Buffon’s Needle for Computing π 
–  http://mste.illinois.edu/reese/buffon/buffon.html 

x 

t 

Large Numbers Reveal Problems in Assumptions 

Results of 1,000,000 throws of a die 

Number     1     2     3     4     5     6 

Fraction  .155 .159 .164 .169 .174 .179 

Probabilistic Reasoning 

•  Evidence 
–  What we know about a situation 

•  Hypothesis 
–  What we want to conclude 

•  Compute 
–  P( Hypothesis | Evidence ) 
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Credit Card Application 

•  E is the data about the applicant's age, job, 
education, income, credit history, etc,  

•  H is the hypothesis that the credit card will 
provide positive return.  

•  The decision of whether to issue the credit 
card to the applicant is based on the 
probability P(H|E). 

Medical Diagnosis 

•  E is a set of symptoms, such as, coughing, 
sneezing, headache, ... 

•  H is a disorder, e.g., common cold, SARS, swine 
flu. 

•  The diagnosis problem is to find an H (disorder) 
such that P(H|E) is maximum. 

Chain rule (aka product rule) 

€ 

p(X |Y ) =  P(X,Y )
P(Y )

€ 

p(X,Y ) =  P(X |Y )P(Y )

We can view calculating the probability of X 
AND Y occurring as two steps: 
1. Y occurs with some probability P(Y) 
2. Then, X occurs, given that Y has occured 

or you can just trust the math…  

Chain rule 

€ 

p(X,Y,Z) =  P(X |Y,Z)P(Y,Z)

€ 

p(X,Y,Z) =  P(X,Y | Z)P(Z)

€ 

p(X,Y,Z) =  P(X |Y,Z)P(Y | Z)P(Z)

€ 

p(X,Y,Z) =  P(Y,Z | X)P(X)

€ 

p(X1,X2,...,Xn ) =  ?
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Bayes’ rule (theorem) 

€ 

p(X |Y ) =  P(X,Y )
P(Y )

€ 

p(X,Y ) =  P(X |Y )P(Y )

€ 

p(X |Y ) =  P(X,Y )
P(Y )

€ 

p(X,Y ) =  P(Y | X)P(X)

€ 

p(X |Y ) =  P(Y | X)P(X)
P(Y )

Bayes rule 

•  Allows us to talk about P(Y|X) rather than P(X|Y) 

•  Sometimes this can be more intuitive 

•  Why? 

€ 

p(X |Y ) =  P(Y | X)P(X)
P(Y )

Bayes rule 

•  p(disease | symptoms) 
–  For everyone who had those symptoms, how many had the 

disease? 

–  p(symptoms|disease) 
•  For everyone that had the disease, how many had this symptom? 

•  p(good_lendee | credit_features) 
–  For everyone who had these credit features, how many were 

good lendees? 

–  p(credit_features | good_lendee) 
•  For all the good lenders, how many had this feature 

•  p(cause | effect) vs. p(effect | cause) 

•  p(H | E) vs. p(E | H) 

Bayes’ rule 

•  We often already have data on good lenders, so 
p(features | good_lendee) is straightforward 

•  p(features) and p(good_lendee) are often easier 
than p(good_lendee|features) 

•  Allows us to properly handle changes in just the 
underlying distribution of good_lendees, etc. 

€ 

p(good _ lendee | features) =  P( features | good _ lendee)P(good _ lendee)
P( features)
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Other benefits 

•  Simple model lender model: 
–  score: is credit score > 600 

–  debt: debt < income 

€ 

p(Good |Credit,Debt) =  P(Credit,Dept |Good)P(Good)
P(Credit,Debt)

Other benefits 

€ 

p(Good |Credit,Debt) 

It’s in the 1950s and you train your model 
“diagnostically” using just p(Good | Credit, Debt). 

However, in the 1960s and 70s the population of 
people that are good lendees drastically increases 
(baby-boomers learned from their depression era 
parents and are better with their money)  

Intiuitively, the probability of good should increase, 
but Hard to figure out from just this equation 

Other benefits 

€ 

p(Good |Credit,Debt) =  P(Credit,Dept |Good)P(Good)
P(Credit,Debt)

Modeled using Bayes’ rule, it’s clear how 
much the probability should change.  
Measure what the new P(Good) is. 

When it rains… 

•  Marie is getting married tomorrow at an outdoor 
ceremony in the desert. In recent years, it has rained 
only 5 days each year. Unfortunately, the weatherman 
has predicted rain for tomorrow. When it actually rains, 
the weatherman correctly forecasts rain 90% of the time. 
When it doesn't rain, he incorrectly forecasts rain 5% of 
the time. What is the probability that it will rain on the day 
of Marie's wedding? 

p(rain) = 5/365 
p(predicted|rain) = 0.9 
p(predicted|¬rain) = 0.05 



8 

When it rains… 

€ 

p(rain | predicted) =
p(predicted | rain)p(rain)

p(predicted)

p(rain) = 5/365 
p(predicted|rain) = 0.9 
p(predicted|¬rain) = 0.05 

€ 

=
0.9*5 /365
p(predicted)

When it rains… 

p(rain) = 5/365 
p(predicted|rain) = 0.9 
p(predicted|¬rain) = 0.05 

€ 

p(predicted) = p(predicted | rain)p(rain) + p(predicted |¬rain)p(¬rain)

€ 

p(¬rain | predicted) = p(predicted |¬rain)p(¬rain)

€ 

= 0.05* 360 /365

Joint distributions 

•  For an expression with n boolean 
variables e.g. P(X1, X2, …, Xn) how many 
entries will be in the probability table? 
– 2n 

•  Does this always have to be the case? 

Independence 

•  Two variables are independent if one has 
nothing whatever to do with the other 

•  For two independent variables, knowing the 
value of one does not change the probability 
distribution of the other variable (or the 
probability of any individual event) 
–  the result of the toss of a coin is independent of a roll 

of a dice 

–  price of tea in England is independent of the result of 
general election in Canada 
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Independent or Dependent? 

•  Catching a cold and having cat-allergy 

•  Miles per gallon and driving habits 

•  Height and longevity of life 

Independent variables 

•  How does independence affect our 
probability equations/properties? 

•  If A and B are independent (written …) 
– P(A,B) = P(A)P(B) 

– P(A|B) = P(A) 

– P(B|A) = P(B) 

A B 

Independent variables 

•  If A and B are independent 
– P(A,B) = P(A)P(B) 

– P(A|B) = P(A) 

– P(B|A) = P(B) 

Reduces the storage requirement 
for the distributions 

Conditional Independence 

•  Dependent events can become independent 
given certain other events 

•  Examples, 
–  height and length of life 

–  “correlation” studies 
•  size of your lawn and length of life 

•  If A, B are conditionally independent of C 

–  P(A,B|C) = P(A|C)P(B|C) 

–  P(A|B,C) = P(A|C) 

–  P(B|A,C) = P(B|C) 

–  but P(A,B) ≠ P(A)P(B) 


